Hepatitis C virus core protein induces hepatic steatosis in transgenic mice

Kyoji Moriya,1 Hiroshi Yotsuyanagi,1 Yoshizumi Shintani,1 Hajime Fujie,1 Kotaro Ishibashi,2 Yoshiharu Matsuura,3 Tatsuo Miyamura3 and Kazuhiko Koike1

1 First Department of Internal Medicine, Faculty of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan
2 Daiichi Pharmaceutical, Tokyo 134, Japan
3 Department of Virology II, National Institute of Infectious Diseases, Tokyo 162, Japan

Hepatitis C virus (HCV) is a major cause of chronic hepatitis worldwide, which finally leads to development of hepatocellular carcinoma. Chronic hepatitis C is characterized by several histological features in the liver which discriminate it from other forms of hepatitis: bile duct damage, lymphoid follicles and steatosis (fatty change). Little is known, however, about the role of HCV or its viral proteins in the pathogenesis of hepatitis. Recently, the core protein of HCV has been suggested to have a transcriptional regulatory function, and thereby to be involved in inducing phenotypic changes in hepatocytes. To clarify whether or not the HCV core protein has an effect on pathological phenotypes in the liver, two independent transgenic mouse lines carrying the HCV core gene were established. These mice developed progressive hepatic steatosis, indicating that the HCV core protein plays a direct role in the development of hepatic steatosis, which characterizes hepatitis C. This transgenic mouse system would be a good animal model for the study of pathogenesis in human HCV infection.

Introduction

Hepatitis C virus (HCV) is the causative agent in most cases of acute and chronic non-A, non-B hepatitis (Choo et al., 1989; Houghton et al., 1991; Saito et al., 1990; Simonetti et al., 1992). Little is known, however, about the role of HCV or its proteins in the pathogenesis of hepatitis. One of the major issues regarding the pathogenesis of HCV-associated liver lesion is whether the HCV proteins have direct effects on pathological phenotypes. Although several strategies have been used to characterize the hepatitis C viral proteins (Grakoui et al., 1993; Harada et al., 1991; Lanford et al., 1993; Matsuura et al., 1992, 1994; Ralston et al., 1993; Santolini et al., 1992), the relationship between protein expression and disease phenotype has not been clarified. We previously established transgenic mouse lines in which the HCV envelope proteins are efficiently expressed in the liver (Koike et al., 1995). Those mice develop no pathological changes in the liver up to the age of 18 months.

The HCV core protein is an unglycosylated protein of about 22 kDa (p22) which is encoded by the 5'-proximal portion of the large open reading frame (Harada et al., 1991). Typical of flaviviral core proteins, it is rich in arginine and lysine, particularly at its N terminus, and it can bind to the RNA genome to form the nucleocapsid of an HCV virion (Santolini et al., 1994). Besides its genome-packaging function, the core protein has been suggested to have a regulatory effect on the expression of hepatitis B viral genes (Shih et al., 1993) and different cellular genes such as the interferon-β gene (Kim et al., 1994) or c-myc oncogene (Ray et al., 1995). Its intracellular localization is cytoplasmic, but it shows nuclear translocation when its C-terminal portion is deleted (Suzuki et al., 1995). These pieces of information imply that the core protein may have a direct effect on the pathogenesis of diseases caused by HCV.

In the present study, we describe transgenic mouse lines carrying the HCV core gene under the control of a regulatory region from the hepatitis B virus. These mice showed stable expression of the core protein and developed progressive steatosis in the liver, one of the characteristic features of chronic hepatitis C (Bach et al., 1992; Lefkowitch et al., 1993; Scheuer et al., 1992).

Methods

■ Construction of plasmid. To ensure high-level expression in the liver, expression vector pBEPBglII (Koike et al., 1995), which contains the hepatitis B virus regulatory elements, was utilized. A 0.6 kb fragment

Author for correspondence: Kazuhiko Koike.
Fax +81 3 3818 2951. e-mail kkoike-tky@umin.u-tokyo.ac.jp

0001-4554 © 1997 SGM

1527
containing the coding region of the core protein was cut from plasmid pSR39 (Harada et al., 1991) by double digestion with *Pst*I and *EcoRI*, and ligated into the *Bgl*II site of plasmid pBEPBgIII after treatment with T4 DNA polymerase and attachment of *Bgl*II linkers. In the resulting plasmid pBEP39, the coding region of the core protein was expected to be expressed under the control of hepatitis B virus regulatory element (Fig. 1).

Production of transgenic mice.

A 1.2 kb *Kpn*I–*Hind*III fragment from pBEP39 (Fig. 1) was purified by PAGE and microinjected into mouse embryos from the C57BL/6N strain (Clea Japan Inc.) as described previously (Koike et al., 1989). Transgenic mice were identified by subjecting 1 µg of tail DNA to amplification by PCR using a set of oligonucleotides as primers. Oligonucleotides T1 (GCCCACAGGAC-GTTAAGTTC) and T2 (TAGTTCACGCCGTCCTCCAG) were used to amplify a 438 bp fragment from the core gene. To further characterize the founders, Southern blotting was performed as described previously (Koike et al., 1989). Mice were cared for according to institutional guidelines, fed with ordinary feed (Funabashi Farms, Funabashi, Japan) and maintained in specific pathogen-free conditions.

Antibodies.

Anti-core rabbit serum and anti-core mouse monoclonal antibody were used in this study. Monoclonal antibody was raised against partially purified recombinant core protein expressed by baculovirus. This monoclonal antibody recognizes aa 105–112 of the core protein. Polyclonal rabbit antibody was prepared using recombinant core protein. The core protein was detected only in the liver (Fig. 2). Such tissue distribution is distinct from that in transgenic mice carrying HCV envelope genes under the control of the same promoter, in which E1 and E2 proteins were detected in several tissues in addition to the liver (Koike et al., 1995). This difference in sensitivities between the anti-envelope and the anti-core antibodies. Alternatively, the core protein may affect tissue of expression preference.

Expression of the core protein.

Western blot analysis with anti-core mouse monoclonal antibody on lysates from the transgenic mouse liver showed the core protein of 22 kDa (Fig. 2a), which is compatible with the size of the core protein previously reported (Harada et al., 1991; Matsuura et al., 1994; Santolini et al., 1994). There was no significant difference in the levels of core protein in the liver between the C21 and C49 lines. Total protein preparations from tissues including the brain, salivary glands, lung, liver, intestine, spleen and kidney from a mouse of the C21 line were then immunoblotted to study the tissue distribution of the core protein. The core protein was detected only in the liver (Fig. 2b). Such tissue distribution is distinct from that in transgenic mice carrying HCV envelope genes under the control of the same promoter, in which E1 and E2 proteins were detected in several tissues in addition to the liver (Koike et al., 1995). This difference in tissue distribution may simply be the result of a difference in sensitivities between the anti-envelope and the anti-core antibodies. Alternatively, the core protein may affect the function of transcriptional regulatory regions (Kim et al., 1994; Ray et al., 1995; Shih et al., 1993), thus influencing the tissue of expression preference.

Histological changes in the liver of the transgenic mice.

Following expression of the core protein from birth, vacuolating lesions appeared in the cytoplasm of hepatocytes...
The steatosis which occurred in the liver of the HCV core transgenic mice is characteristic of chronic hepatitis C. When compared with chronic hepatitis B or autoimmune chronic active hepatitis, chronic hepatitis C has several characteristic histological features in the liver. These include bile duct damage, lymphoid follicle formation, preneoplastic focus or neoplasia was observed in the transgenic mice up to the age of 12 months.

We then examined the tissue localization of the core protein by immunostaining. Frozen sections of transgenic mouse liver stained with anti-core rabbit serum revealed that the core protein was present in the cytoplasm of hepatocytes, principally located around the central veins, but was also present within lobules (Fig. 3F). The core protein was invariably localized in the cytoplasm of hepatocytes (Lo et al., 1995; Santolini et al., 1994; Suzuki et al., 1995). Control mouse liver did not show staining with anti-core rabbit serum (Fig. 3G), and transgenic mouse liver did not show staining with normal rabbit serum.

Absence of increased apoptosis in the liver

Although we did not observe necroinflammatory reactions in the livers of the transgenic mice, we applied the TUNEL method (Gavrieli et al., 1992) in order to detect the presence of apoptosis, which may not be detected by conventional microscopic examination. However, the incidence of TUNEL-positive hepatocytes in transgenic mouse liver was as low as that in the livers of non-transgenic littersmates. There was no elevation of serum alanine aminotransferase levels by the age of 12 months in the transgenic mice.

Discussion

The steatosis which occurred in the liver of the HCV core transgenic mice is characteristic of chronic hepatitis C. When compared with chronic hepatitis B or autoimmune chronic active hepatitis, chronic hepatitis C has several characteristic histological features in the liver. These include bile duct damage, lymphoid follicles and steatosis (Bach et al., 1992; Lefkowitch et al., 1993; Scheuer et al., 1992). Bach et al. (1992) reported that steatosis was observed in 72% of 50 patients with chronic hepatitis C compared to 19% with autoimmune chronic active hepatitis. Lefkowitch et al. (1993) reported that large-droplet fatty change was observed at a significantly higher rate in patients with chronic hepatitis C than in those with chronic hepatitis B. Our results confirm the existence of a relationship between chronic hepatitis C and steatosis, and suggest a direct role for the HCV core protein in inducing steatosis in the liver.

The hepatic steatosis observed in the transgenic mice is not the result of uptake of lipids from the blood, because there was no elevation in the levels of serum triglycerides or cholesterol. The core protein may have a specific effect on hepatocytes, causing the formation of fat droplets. It is noteworthy that there is no histological phenotype in the liver of mice transgenic for HCV envelope genes, E1 and E2, which are expressed in the cytoplasm of hepatocytes under the control of...
the same promoter used in this study (Koike et al., 1995). The core protein may bind to enzymatic molecules or apolipoproteins which are involved in the metabolism of lipids, and lead to the formation of fat droplets in hepatocytes. It is interesting that the HCV core gene is associated with the formation of cytoplasmic vacuoles containing triglycerides when it is transfected into cultured cells (Barba et al., 1997; Moradpour et al., 1996). It should be noted that the HCV core protein is also detectable in the liver of some chronic hepatitis C patients by our Western blot analysis, and that the expression level in the transgenic mouse liver is only a few times higher than those in the livers of patients (H. Fujie and K. Koike, unpublished results).

Other features characterizing histology of hepatitis C, bile duct damage and lymphoid follicle formation, were not observed in the HCV core gene transgenic mice. Moreover, no increased incidence of cell death compared to that of normal littermate mice and no apparent lymphocytic infiltrations were observed in the livers of the transgenic mice. The HCV core protein per se is not likely to cause hepatitis, although there remains a possibility that the expression level of the core protein may be too low to induce cell death or hepatitis in transgenic mice. Other HCV proteins may be responsible or the immunological response of the host may be essential for the induction of hepatitis in HCV infection.

Our current results support the existence of a relationship between chronic HCV infection and hepatic steatosis, and suggest a direct role for the viral core protein in the steatotic changes that are frequently observed in chronic HCV infection. This mouse system would be a good animal model for studying the pathogenesis of HCV infection.

We thank Ms C. Ariga for her technical assistance. This work was supported in part by a Grant-in-Aid from the Ministry of Education, Science and Culture of Japan and a grant from the Sankyo Foundation of Life Science.

References

Received 10 December 1996; Accepted 6 March 1997.