Two novel subgenomic RNAs derived from RNA 3 of tomato aspermy cucumovirus

Bu-jun Shi, Shou-wei Ding† and Robert H. Symons

Department of Plant Science, Waite Institute, University of Adelaide, Glen Osmond, SA 5064, Australia

Two abundant subgenomic RNAs, designated RNA 3B and RNA 5, were found to be associated with the V strain of tomato aspermy cucumovirus (V-TAV). Sequence determination showed that the 3′-terminal 323 nucleotides (nt) of RNA 3B was identical to RNA 5, whereas its 5′-terminal 163 nt was a direct repeat (one nt difference) of the 5′-half of RNA 5, and that both RNAs are completely homologous to the 3′-terminal untranslated region of TAV RNA 3. TAV RNAs 3B and 5 were also detected in the infection of a pseudorecombinant virus consisting of TAV RNA 3 and RNAs 1 and 2 from cucumber mosaic virus. Furthermore, only RNA 5, not RNA 3B, was detected in a TAV mutant in which one of the repeats was deleted from RNA 3. These genetic studies clearly show that both RNA species are derived from TAV RNA 3. However, in contrast to TAV RNAs 4 and 4A, which encode coat protein and 2b protein, respectively, RNAs 3B and 5 represent a novel class of subgenomic RNAs from TAV that do not function as mRNAs. Possible functional roles for such a class of viral subgenomic RNAs are discussed.

Introduction

Tomato aspermy cucumovirus (TAV) is an important agent of chrysanthemum disease throughout the world (Kaper & Waterworth, 1981; Shi et al., 1993). TAV contains a single-stranded RNA genome of messenger-sense divided into three species, RNAs 1, 2 and 3 (Murphy et al., 1995). The complete genome sequence of the V strain (V-TAV) (Moriones et al., 1991; Bernal et al., 1991; F. García-Arenal, personal communication), the nucleotide sequences of RNA 3 of the C, P and B strains (O’Reilly et al., 1991, 1994; Salanki et al., 1994), as well as the 3′ termini of the V and N strains (Wilson & Symons, 1981) have been determined. As expected, the genomic RNAs of TAV would express functions similar to those found for the type member of the cucumovirus group, cucumber mosaic virus (CMV) (Palukaitis et al., 1992).

Recently, we demonstrated that RNA 2 of TAV encodes an overlapping gene (2b) in addition to the 2a gene (Shi et al., 1996). Gene 2b is most likely expressed through a subgenomic RNA (sgRNA) derived from RNA 2, which we have called, on a size basis, RNA 4A, because it is equivalent to RNA 4A of CMV (Peden & Symons, 1973; Ding et al., 1994; Shi et al., 1996). The 2b protein of CMV has been demonstrated to be essential for long-distance virus movement and for the expression of systemic symptoms (Ding et al., 1995a).

In this study, we report the isolation and characterization of two non-translated sgRNAs of TAV which are derived from RNA 3 and which we have designated RNA 3B and RNA 5. RNA 3B has two 5′-terminal tandem repeats of 163 nt whereas RNA 5 is exactly one repeat shorter.

Methods

■ Virus and infectious cDNA clones. V-TAV (Habili & Francki, 1974a) was propagated in Nicotiana glutinosa and purified as described by Peden & Symons (1973). RNA 3B and RNA 5 were purified from virion RNAs by PAGE as described by Symons (1978). Infectious full-length cDNA clones of each of the three genomic RNAs of either the Q strain of CMV (Q-CMV) (Ding et al., 1995b) or V-TAV (designated pCassIT1, pCassIT2 and pCassIT3, which correspond to RNA 1, RNA 2 and RNA 3 of TAV, respectively; unpublished results) were used and inoculated on N. glutinosa and N. clevelandii, as described by Ding et al. (1995b).

■ Sequence determination. Purified RNA 3B and RNA 5 were either 5′ end-labelled using [γ-32P]ATP and T4 polynucleotide kinase,
following dephosphorylation, or 3’ end-labelled with [5’-32P]pCp (England et al., 1980) and then sequenced by partial enzymatic digestion as described by Haseloff & Symons (1981) and Forster et al. (1990).

The rapid amplification of cDNA ends (RACE) technique (Frohman et al., 1988) was used for synthesis of cDNAs to RNA 3B and RNA 5. Purified RNA 3B and RNA 5 were polyadenylated with Escherichia coli poly(A) polymerase and then reverse transcribed with an oligo(dT) primer [5’ GACTCGAGTCGACATCGA(T)17 3’]. The resulting cDNAs were 3’-tailed using terminal deoxynucleotidyl transferase, then PCR-amplified with the same oligo(dT) primer. The amplified product was cloned into the Sma site of pBluescript SK(+)(Stratagene) and sequenced by partial enzymatic digestion following dephosphorylation, or 3’-terminal region of RNA 3B and RNA 5 obtained as above.

■ Pseudorecombinants between V-TAV and Q-CMV. Infectious cDNA clones of RNA 3 of V-TAV and Q-CMV were exchanged between infectious cDNA 1 and 2 clones of V-TAV and Q-CMV to make two different pseudorecombinant plasmid mixtures, C1C2T3 and T1T2C3, in which numbers 1, 2 and 3 correspond to genomic RNAs 1, 2 and 3 of each virus and C and T correspond to Q-CMV and V-TAV, respectively. The mixtures were then inoculated directly onto two common host plants, N. glutinosa and N. clevelandii.

■ Deletion cDNA clone of V-TAV RNA 3. Deletion of one copy of the 163 nt tandem repeat in V-TAV RNA 3 was constructed by sequentially digesting pCassT3 with specific restriction enzymes, followed by religation and confirmation by deoxyribonucleotide sequencing. This deletion construct was designated pCassT3Δ163.

Results

RNA 3B and RNA 5 are both associated with V-TAV

RNAs 1, 2 and 3 (genomic RNAs) and RNA 4 (a subgenomic RNA of RNA 3 and the mRNA for coat protein) of V-TAV have been reported (Habili & Francki, 1974a; Moriones et al., 1991; Bernal et al., 1991; F. García-Arenal, personal communication). We have recently shown that TAV RNA 2 also has a subgenomic RNA, RNA 4A (702 nt), which most likely functions as mRNA for a newly discovered overlapping gene (2b) whose translation product has been detected in infected plants (Shi et al., 1996).

As shown by Northern blot hybridization analysis (Fig. 1b), two additional smaller RNA species, designated RNA 3B and RNA 5 (see below), were found to be encapsidated in virions of V-TAV (lane 5). Both hybridized to an RNA probe (probe T) complementary to the 3’-terminal 100 residues of V-TAV RNA 3 (Fig. 1a), indicating that these two RNA species are of a TAV origin and that they most likely contain conserved 3’-terminal sequences. These two RNAs accumulated in TAV-infected plants (lane 4) to levels comparable to the known viral RNAs (lane 5). An RNA of similar size to TAV RNA 3B was detected in total plant RNAs (TR) of WAIL-CMV (a subgroup I strain) infected plants (Fig. 1b, lane 3). However, it was not detected in virion RNAs (VR) of WAIL-CMV (data not shown), in VR of Q-CMV (a subgroup II strain) (data not shown) or in TR of Q-CMV infected plants (Fig. 1b, lane 2) using an RNA probe (probe C in Fig. 1a) complementary to the 3’-terminal 495 residues of Q-CMV RNA 3. RNA 5 was detected in both VR of Q-CMV (data not shown) and TR of Q-CMV infected plants (Fig. 1b, lane 2) using probe C. In addition, TAV RNAs 3B and 5 were detected at early stages of virus infection (6 days after inoculation) in leaves inoculated with infectious cDNA clones of V-TAV (data not shown), indicating that these two RNAs may not be defective interfering (DI) RNAs, as the appearance of DI RNAs usually requires several passages at high multiplicity of infection (Hillman et al., 1987). Therefore,
it is most likely that RNAs 3B and 5 are natural subgenomic RNAs of TAV.

RNAs 3B and 5 are a novel class of subgenomic RNAs derived from RNA 3

To determine the nature and the molecular structure of RNAs 3B and 5, the complete sequences of both RNAs were determined after purification from virions by a combination of three sequencing strategies described in Methods, and are presented in Fig. 2. As the 5′-end-labelling of both RNAs required dephosphorylation but not decapping, it is likely that both RNAs 3B and 5 are 5′-phosphorylated and not capped. RNA 3B is 486 nt long and RNA 5 is 323 nt long, which is identical to the 3′-terminal 323 nt of RNA 3B (Fig. 2). The 5′-terminal sequence (326 nt) of RNA 3B consists of two tandem repeats of 163 nt that differ only by a single nt (marked by an asterisk in Fig. 2) while RNA 5 contains only one repeat. Importantly, both RNAs encode no open reading frame (ORF) of 21 codons or longer.

The nucleotide sequences of RNAs 3B and 5 were further compared to those of V-TAV RNAs 1 and 2 (Moriones et al., 1991; Bernal et al., 1991) as well as to the unpublished sequence of RNA 3 of V-TAV (F. García-Arenal, personal communication). RNA 3B and RNA 5 showed 99.4% and 99.7% identity to the 3′-terminal 486 and 323 of RNA 3 of V-TAV, respectively. The difference between either RNA 3B or RNA 5 and the RNA 3 sequences include two substitutions (G1974 of RNA 3 to U179 of RNA 3B; U1975 of RNA 3 to G24 of RNA 3B) and one insertion (U469 of RNA 3B or U506 of RNA 5 between nucleotides 2369-2371 of RNA 3). These came up consistently by all three sequencing methods used. However, RNA 3B is identical to the 3′-terminal 486 nt, and RNA 5 to the 3′-terminal 323 nt, of V-TAV RNA 3 determined from our four RNA 3 cDNA clones (B.-J. Shi and others, unpublished results). As RNA 3 contains a 3′-untranslated region of 502 nt which encodes no ORF of 21 codons or longer (F. García-Arenal, personal communication), we conclude that both RNAs 3B and 5 are derived completely from the 3′-untranslated region of RNA 3 and are unlikely to function as mRNAs. The lack of 5′-capping of RNAs 3B and 5 further supports a non-mRNA role for these RNAs.

RNAs 3B and 5 are derived from RNA 3 as shown by genetic studies

The following two sets of genetic studies further support the conclusion that both RNAs 3B and 5 are derived from RNA 3. Using infectious cDNA clones of the three genomic RNAs of V-TAV (B.-J. Shi and others, unpublished results) and Q-CMV (Ding et al., 1995a), two pseudorecombinant viruses, T1T2C3 and C1C2T3, were reconstituted by exchanging RNA 3 cDNA clones between the two viruses. Both pseudorecombinants were viable, as systemic virus infections were established in *N. glutinosa* plants, in agreement with earlier work using purified RNAs to prepare pseudorecombinants (Habili & Franchi, 1974b). Total RNAs were extracted from systemically infected leaves and analysed by Northern blot hybridization using probes T and C specific for the 3′ conserved untranslated regions of V-TAV and Q-CMV, respectively (Fig. 1a). RNA 3B was detected in C1C2T3 infections (Fig. 3a, lane 2) and not in T1T2C3 infections (lane 3), demonstrating that TAV RNA 3 is the genetic source of RNA 3B.

In contrast to RNA 3B, RNA 5 of V-TAV was not detected in infections of both pseudorecombinants (Fig. 3b, lanes 2 and 3); the specificity of probe T for the 3′ conserved untranslated region of V-TAV was demonstrated by the absence of hybridization with any of the six known RNAs of Q-CMV RNAs (lane 6). Hence, this indicates that V-TAV RNA 5 can be
derived from RNAs 1 and/or 2 (lane 3), in addition to RNA 3 (lane 2). RNA 5 of Q-CMV (lane 13) has recently been demonstrated to be a mixed population derived from the conserved 3’-terminal regions of genomic RNAs 2 and 3 (Blanchard et al., 1996).

In the second approach, a derivative (pCassIT3Δ163) of the V-TAV RNA 3 cDNA clone was constructed by deleting the first copy of the tandem repeats. Co-inoculation of pCassIT3Δ163 with the cDNA clones of V-TAV RNAs 1 and 2 gave rise to a viable mutant virus designated T1T2T3Δ163 that systemically infected N. glutinosa (Fig. 3b, lane 1). As expected, the progeny RNAs 3 and 4 of T1T2T3Δ163 (lane 1) migrated faster than those of wild-type V-TAV (lane 5) in the denaturing agarose gel electrophoresis. However, only RNA 5, not RNA 3B, was detected in the plants infected with T1T2T3Δ163, thus unequivocally demonstrating that RNA 3B originated from RNA 3.

Discussion

Our sequence analysis showed that RNA 3B is 486 nt in length and contained two 5’-terminal tandem repeats of 163 nt, whereas RNA 5 is 323 nt in length and contained only one repeat, and that both RNAs are identical in sequence to the 3’-terminal 486 and 323 nt of RNA 3, respectively, and have no ability to encode any proteins. Interestingly, such tandem repeats are absent in strains B, C and P of TAV sequenced to date (O’Reilly et al., 1991, 1994; Salanki et al., 1994). Genetic studies demonstrated that these two novel sgRNAs, RNAs 3B and 5, are derived from TAV RNA 3. RNA 5 of V-TAV was also detected in infections of the pseudorecombinant (T1T2C3) suggesting that RNA 5 may be a mixed population derived from RNA 3 and RNAs 1 and/or 2 as found in CMV (Blanchard et al., 1996).

RNA 3B and RNA 5 have the same 5’-sequence, suggesting that they might have the same mechanism for generation. Using a radioactive probe complementary to the whole of RNA 3 except for the region common to RNA 3B, we detected only full-length RNAs 3 and 4 and could not detect any other fragments derived from RNA 3, even after long exposure (data not shown), indicating that RNA 3B and RNA 5 are not the result of an endonucleolytic cleavage of RNA 3 at a specific site. Hence, these subgenomic RNAs are presumably transcribed from the (-) RNA 3 sequence (Miller et al., 1985).

The promoter regions for sgRNA synthesis have been investigated with other members of the Bravoviridae: brome mosaic virus (BMV) (French & Ahlquist, 1987, 1988; Marsh et al., 1988; Smirnyagina et al., 1994), cowpea chlorotic mottle virus (Allison et al., 1989; Pacha & Ahlquist, 1992), alfalfa mosaic virus (AMV) (Van der Kuyl et al., 1990, 1991; Van der Vossen et al., 1995) and CMV (Boccard & Baulcombe, 1993). Most of these promoter regions have been shown to lie predominantly upstream of the transcription initiation site (e.g., of BMV and CMV sgRNA 4).
As RNAs 3B and 5 have the same initiation sequence, they may have the same promoter-like sequences. However, RNA 3 does not have a third copy of the 163 nt and thereby the sequence upstream of RNA 3B on RNA 3 is different from that upstream of RNA 5 on RNA 3, suggesting that the organization of the RNA 3 promoters for sgRNA 3B and RNA 5 might be, like the beet necrotic yellow vein virus RNA 3 sgRNA promoter (Balmori et al., 1993), situated downstream, and within, each repeat of RNAs 3B and 5 on RNA 3.

The mechanism of generation of sequence repeats remains unresolved. TAV RNA 3, as well as RNA 3B, contains two tandem repeats of 163 nt, suggesting an association with replication slippage (Hancock et al., 1995). Although internal in these tandem repeats of RNA 3, a single nucleotide difference in two repeats, A1966 and G2120 (Fig. 2), could arise by a copy error of an RNA polymerase replicating a single RNA species (Keese et al., 1988). However, due to the sequence from residue C2754 to A2821 of RNA 2 (Moriones et al., 1991), or from U1313 to A2161 of V-TAV RNA 1 (Bernal et al., 1991) corresponding to the region around A1966 in the first repeat of V-TAV RNA 3, the two tandem repeats of RNA 3 could also have arisen by RNA polymerase jumping (Keese & Symons, 1985, 1987) from the primary template RNA 3 to the nascent complementary RNA 1 or RNA 2. Such a replicase-mediated copy choice-type model has been proposed to explain the generation of DI RNAs (Pogány et al., 1995).

Direct repeats have been investigated in other plant RNA viruses (Ding et al., 1989). In AIMV, a tandem repeat at the 5′ untranslated region of RNA 3 affected accumulation of P3 protein (Van der Vossen et al., 1993) and may be involved with ribosome binding (Pinck et al., 1981). In ononis yellow mosaic tymovirus, the repeat of the 5′ untranslated region has been proposed to form a stem-loop structure to modulate initiation of translation of the overlapping tymoviral genes (Ding et al., 1989).

In our study, a TAV mutant in which one of the repeats was precisely removed from RNA 3 did not apparently affect the symptoms and host range compared to wild-type TAV (data not shown), indicating that the repeat may not be of major biological significance. In addition, the TAV mutant was stable in the presence of the wild-type TAV (data not shown), suggesting that the repeat did not interact with the other viral RNAs. However, it is feasible that the repeat sequence may provide some selective advantage under specific host and/or environmental conditions.

Sequence analysis showed that neither RNA 3B nor RNA 5 contain any ORFs longer than 63 nt. It is unlikely that these two RNAs encode any protein although they have been clearly shown to be genuine sgRNAs. A similar sgRNA with no coding ability has been found in barley yellow dwarf luteovirus (Kelly et al., 1994). Pseudorecombinant experiments showed that the level of accumulation of RNA 3B is higher than that of RNA 4 in C1C2T3 (Fig. 3 b, lane 2) while it is lower than that of RNA 4 in wild-type V-TAV (Fig. 3 b, lane 5).

Combined with the fact that RNAs 3B and 5 are abundantly transcribed during infection, this leads us to speculate that both RNAs might have a regulatory role in viral RNA replication.

The authors wish to thank Dr F. García-Arenal for kindly providing the full-length RNA 3 sequence of V-TAV, Wanxiang Li for technical help, Neil Shirley and Jing Li for oligonucleotide synthesis and David Warrillow for providing an oligo(dT) primer. This work was supported by the Australian Research Council Special Research Centre for Basic and Applied Plant Molecular Biology. B.-J.S. is the recipient of a University of Adelaide Overseas Postgraduate Research Scholarship.

References

Received 8 August 1996; Accepted 13 November 1996