Infectious **in vivo** and **in vitro** transcripts from a full-length cDNA clone of PVY-N605, a Swiss necrotic isolate of potato virus Y

Gábor Jakab,1 Eric Droz,1 Gianinna Brigneti,2 David Baulcombe2 and Pia Malnoé†

1 Station Fédérale de Recherches en Production Végétale de Changins, Route de Duillier 50, PO Box 254, CH-1260 Nyon, Switzerland
2 The Sainsbury Laboratory, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK

A full-length cDNA clone of the potato virus Y (PVY) genome was obtained after cloning difficulties in *Escherichia coli* were overcome. These difficulties were mainly due to the expression of the CI gene from upstream prokaryotic promoter-like elements within the PVY genome. To overcome this problem, PVY cDNA was maintained in two subclones which were ligated before infection. A plasmid in which these two fragments were contained could be propagated in some *E. coli* strains but was unstable and yielded only low levels of plasmid DNA. Replacement of the 35S promoter by the SP6 promoter slightly increased the stability of the plasmid and its RNA transcripts were infectious when capped with m7G(5)ppp(5)G. Using two inoculation methods (mechanical or biolistic) the cDNA and its RNA transcript proved infectious on three *Nicotiana* species and on *Solanum tuberosum*.

With its numerous well-characterized strains and isolates, potato virus Y (PVY) is the type member of the genus *Potyvirus* in the family *Potyviridae* (Shukla et al., 1994) and an important model for studying the molecular biology of the *Potyviridae*. There are reports of infectious **in vitro** transcripts of full-length cDNA clones of several potyviruses (Domier et al., 1989; Riechmann et al., 1990; Gal-On et al., 1991; Dolja et al., 1992; Puurand et al., 1996). Infectious plasmid DNAs with the potyviral cDNA fused to the cauliflower mosaic virus (CaMV) 35S promoter have also been obtained (Maiss et al., 1992; Gal-On et al., 1995; Johansen, 1996).

However, since the first publication of the complete nucleotide sequence of a PVY isolate (Robaglia et al., 1989), there has been no report of an infectious cDNA of this virus having been cloned and maintained in a bacterial vector, despite numerous attempts (Fakhfakh et al., 1996). These failures may be due to the expression of cytotoxic products from internal cryptic prokaryotic promoters in the viral genome. To avoid this problem Fakhfakh et al. (1996) described a one-step, cell-free method to generate a complete cDNA from PVY genomic RNA using RT–PCR. The cDNA thus obtained, although infectious, does not lend itself to further genetic manipulation. As an alternative solution, Johansen (1996) reported that insertion of intron sequences into full-length pea seedborne mosaic virus (PSbMV) genomic cDNA clones stabilized those in *E. coli*. However, the effective insertion sites were not the same in two closely related strains (P1 and P4) of this virus. This observation supports the previous hypothesis (Fakhfakh et al., 1996) that the toxicity of the potyviral genome in bacteria is a result of the simultaneous presence of cryptic promoter element(s), translational initiation site(s) and cytotoxic gene product(s). This approach, however useful, would be more widely applicable if the cytotoxic gene product could be identified because the positions of the promoter elements are accidental and can be different in various potyvirus species, strains and isolates.

In this paper we describe the construction of infectious full-length cDNA of PVY-N605 (a Swiss veinal necrotic isolate from potato cv. Bintje in 1976). This cDNA could be propagated stably as two overlapping halves which, after ligation, generated an infectious cDNA copy. Alternatively, it could be propagated as a single piece in *E. coli* SURE strain (Stratagene) or DH10B strain (Gibco-BRL), although instability of the plasmid was observed.

PVY-N605 (kindly provided by P. Gugerli) was maintained in tobacco (*Nicotiana tabacum*) SR1 plants. Virus purification and RNA extraction were performed according to Gugerli (1986). First and second strand PVY cDNA were synthesized using the iZAP cDNA synthesis and cloning kit (Stratagene) according to the manufacturer’s instructions. The iZAP library was screened using 32P-labelled PCR fragments specific for the 5′ or the 3′ regions of the PVY genome. We have confirmed that full-length cDNA of PVY could not be cloned directly in standard plasmid vectors or commonly used host strains of *E. coli* (Fakhfakh et al., 1996). However, we show below that it is

Author for correspondence: Pia Malnoe.
Fax +41 22 362 13 25. e-mail pia.malnoe@rac.admin.ch
possible to produce full-length cDNA by ligation of fragments from partial clones of PVY genome.

The strategy used to produce the full-length cDNA clone of PVY-N605 from partial clones is outlined in Fig. 1. First, elements of the 35S or SP6 promoters were introduced in front of the viral cDNA 5' end in the Y17 clone. The 35S promoter fragment from the pBI221 vector (Clontech) was inserted upstream of the Y17 virus fragment using the SP65 promoter region (underlined). The result was cloned into pUC18 using the TATAACATAA promoter region element(s) in the PVY genome (Fig. 2) allowing the expression of the toxic CI gene. To avoid the putative toxicity of the CI gene, the PVY genome was split in two parts within the toxic region, an approach used by others to overcome toxicity problems in flaviviruses (Rice et al., 1989; Sumiyoshi et al., 1992) and in beet necrotic yellow vein virus (Quillet et al., 1989). The unique BstXI restriction site in the CI region permitted the joining of the two parts of PVY by in vitro ligation. The partial clone from the 5' region (5'6/1BK) included the CaMV 35S promoter and 3' end were removed by PCR (Fig. 2). These 5' fragments were then fused to the 6/1 clone to produce constructs 5'6/1BK or SP65', respectively.

Attempts to obtain a near full-length cDNA clone of PVY-N605 by ligation of the appropriate M4/3, 39/9 and 6/1 fragments were unsuccessful, despite the numerous strains of E. coli tested, among them ABLE K (Stratagene), which reduces by 10-fold the copy number of pUC18. Plasmids produced after transformation with the ligated fragments had undergone extensive rearrangements (insertions or deletions) in the area of the CI gene of PVY (data not shown). When part of the CI region (nt 3971–4997) was deleted from the full-length clone without altering the reading frame, or a frameshift mutation was introduced by filling-in the BstI site at position 4278, the clones became stable yielding 10–15 µg DNA/ml of culture. This suggested that the toxicity is probably associated with the CI gene, which codes for an RNA helicase (Lain et al., 1990), although the participation of other viral products in the toxic effect of PVY cannot be excluded. A frameshift mutation in the P3 region (upstream of the CI) also could stabilize the cDNA organization of PVY is shown at the top. The arrowheads indicate the sites where cDNA fragments were joined by ligation. Pro: 35S or SP6 promoter elements. Clones harbouring the longest fragments – clone 6/1 (5’ half of the viral genome, nt 17–5319 in the PVY-N605 sequence, accession no. X97895) and clone M4/3 (3’ half, nt 5825–9701 and a 100 nt long poly(A) tail) – were selected for assembly of full-length cDNA. Missing portions of the PVY genome (nt 1–16 and 5320–5824) were obtained by PCR amplification of parts of the double-stranded cDNA using, respectively, primer pairs #1 (5’ ATTAAAAAAAACTCAAATGGCTGTATTTTC) and #7 (5’ GCCATTCAAGAGCGTGATTITTC) and #3 (5’ ACATAC TACTCGCAATATGCG) and #9 (5’ GCA TACTCATGATTCCG). The fragments obtained were cloned into Smal-digested pUC18, generating clones Y17 (nt 1–1492) and 39/9 (nt 4125–7187). For promoter insertions, see text.

Fig. 1. Construction of the full-length cDNA clone of PVY-N605. The genome organization of PVY is shown at the top. The arrowheads indicate the sites where cDNA fragments were joined by ligation. Pro: 35S or SP6 promoter elements. Clones harbouring the longest fragments – clone 6/1 (5’ half of the viral genome, nt 17–5319 in the PVY-N605 sequence, accession no. X97895) and clone M4/3 (3’ half, nt 5825–9701 and a 100 nt long poly(A) tail) – were selected for assembly of full-length cDNA. Missing portions of the PVY genome (nt 1–16 and 5320–5824) were obtained by PCR amplification of parts of the double-stranded cDNA using, respectively, primer pairs #1 (5’ ATTAAAAAAAACTCAAATGGCTGTATTTTC) and #7 (5’ GCCATTCAAGAGCGTGATTITTC) and #3 (5’ ACATAC TACTCGCAATATGCG) and #9 (5’ GCA TACTCATGATTCCG). The fragments obtained were cloned into Smal-digested pUC18, generating clones Y17 (nt 1–1492) and 39/9 (nt 4125–7187). For promoter insertions, see text.
the 5’6/1BK construct and the BstXI–KpnI fragment of the SPH83’PA construct, when ligated, were not infectious by mechanical inoculation. However, when using a portable helium flow particle gun (originally an Agracetus Inc. development, now available as Helios gene gun, Bio-Rad), small amounts of ligated DNA (150 ng DNA per leaf) were infectious in three Nicotiana species (Table 1).

The biolistic inoculation method, although very efficient, is laborious and expensive compared with mechanical inoculation, although the latter requires more DNA. To obtain higher amounts of cDNA, we decided to pursue our attempts to produce a full-length clone of PVY. The BstXI–KpnI fragment of SPH83’PA was ligated into the plasmid 5’6/1BK digested at the same sites. Upon transformation into the SURE strain of Escherichia coli, the resulting clone S2 accumulated to low yields (50–100 ng DNA/ml of culture) and was prone to rearrangement. To avoid extensive rearrangements, it was necessary to amplify the plasmid in small volumes without prior passaging of the inoculum.

After linearization at the 3’ KpnI site, S2 DNA proved infectious using the particle gun on both N. benthamiana and N. tabacum plants (Table 1). Using mechanical inoculation, it was infectious on N. clevelandii and N. benthamiana, but not on N. tabacum. Plants infected with S2 DNA developed typical PVY-N605 symptoms and accumulated PVY RNA with a 2 to 5 day delay compared with wild-type virus.

Primer extension experiments on wild-type RNA and on the RNA of virus derived from the S2 clone (data not shown) revealed the presence, at the 5’ end of PVY genome, of an additional adenosine residue not reported previously (Robaglia et al., 1989). This residue, absent in the S2 cDNA, was restored spontaneously in planta during successful infection. However, incorporation of this adenosine in clone S2 (35S + AFLC, Fig. 1) did not significantly increase the infectivity of the DNA (Table 1). For unknown reasons, the undigested DNA proved more infectious after mechanical inoculation on N. tabacum than the linear form (Table 1).

In a further attempt to increase the infectivity of cloned PVY-N605 we tested in vitro transcripts. The promoter in the 35S + AFLC plasmid was replaced with the SP6 promoter to produce plasmid SP6FLC (Fig. 1), which replicated with slightly increased yields in bacteria (0.5 and 0.8 µg DNA/ml of culture). This plasmid was linearized with KpnI before in vitro transcription by SP6 RNA polymerase (Boehringer), with or without inclusion of the cap analogue m7G(5’)-ppp(5’)-G (Pharmacia) as described by Chapman et al. (1992). Only capped in vitro transcripts were infectious on N. clevelandii, N. benthamiana and N. tabacum following mechanical inoculation. Infection was more efficient with transcripts than with DNA inoculation, especially on N. benthamiana and N. tabacum (Table 1). No infection resulted from mechanical inoculation of PVY cDNA or RNA transcript on Solanum tuberosum cv. Bintje. Biolistic delivery overcame this problem, although the infection efficiency remained low (Table 1).

Symptom development with the transcript inoculum was slower than with wild-type virus. This delay was not a property of the progeny virus recovered from the transcript- or DNA-inoculated plants. Progeny virus produced symptoms indistinguishable from wild-type PVY-N605. RNA blot hybridization showed accumulation of viral RNAs of similar molecular size in both wild-type and progeny virus (data not shown). In addition, the viral coat protein, as demonstrated by
Table 1. Summary of infection experiments with the different constructs generated from the full-length PVY-N605 cDNA

<table>
<thead>
<tr>
<th>Name of the construct / mode of inoculation</th>
<th>Test plants</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N. clev. (inf/ino)</td>
</tr>
<tr>
<td>5'/6′/BK & SP83/A ligated / mechanical (1μg DNA/leaf)</td>
<td>N.D.</td>
</tr>
<tr>
<td>5'/6′/BK & SP83/A ligated / particle gun (150ng DNA/leaf)</td>
<td>36% (1/11)</td>
</tr>
<tr>
<td>S2 digested / mechanical (10μg DNA/leaf)</td>
<td>83% (5/6)</td>
</tr>
<tr>
<td>S2 digested / particle gun (150ng DNA/leaf)</td>
<td>75% (12/16)</td>
</tr>
<tr>
<td>3S5/AFLC digested / mechanical (10μg DNA/leaf)</td>
<td>70% (7/10)</td>
</tr>
<tr>
<td>3S5/AFLC undigested / mechanical (10μg DNA/leaf)</td>
<td>56% (9/16)</td>
</tr>
<tr>
<td>3S5/AFLC undigested / particle gun (100ng DNA/leaf)</td>
<td>100% (5/5)</td>
</tr>
<tr>
<td>SP8FLC RNA (capped) / mechanical (1μg RNA/leaf)</td>
<td>75% (9/12)</td>
</tr>
<tr>
<td>SP8FLC RNA (capped) / particle gun (100ng RNA/leaf)</td>
<td>100% (5/5)</td>
</tr>
</tbody>
</table>

ELISA, was produced at the same level as in a wild-type infection and the virus particles had normal morphology (data not shown).

In conclusion, the identification of a cytotoxic region within the PVY genome has allowed us to develop a strategy whereby the virus genome could be stably maintained in bacteria as two overlapping subclones and subsequently ligated to produce an infectious cDNA, provided that biolistics is used for inoculation. We also present an alternative strategy in which mechanical inoculation is feasible, but which requires a full-length cDNA clone. In this approach, in vitro transcripts consistently resulted in a better infectivity than cDNA inoculations. Finally, the choice of the test plant species is critical in such strategies.

Derivatives of these constructs are currently being used with transgenic plants expressing viral sequences of the same isolate (Farinelli & Malnoë, 1993; Malnoë et al., 1994) in a risk assessment programme. The experiments will allow us to examine the effects and frequency of recombination between viral genomes and transgenes expressed in host plants, data which are important for the evaluation of the risks associated with the exploitation of genetically engineered organisms (Falk & Bruening, 1994).

The authors thank Dr Paul Gugerli for providing the PVY strains and his help with virus purification and Dr Paul Christou for his help and technical advice with the portable particle gun. We also wish to thank Professor Gerald Collet for his encouraging support, Dr David Johnston for helpful discussions and critical reading of the text and Mr Fred Tschuy for technical assistance in the greenhouse.

This project has been supported by the Swiss National Science Foundation, grant 5002-035213 and 5002-045055.

References

Received 2 January 1997; Accepted 22 August 1997