1887

Abstract

It has been claimed that MHC class I proteins serve as receptors for murine cytomegalovirus (MCMV) and that this interaction is the most important mechanism for virus entry in most cells. This claim is based on the observation that the MHC haplotype contributes to the susceptibility to cytomegalovirus (CMV) infection . Results from studies support the concept that stable expression of correctly folded MHC class I molecules contributes to infection, since the individual properties of MHC class I alleles, the availability of -microglobulin ( m) and also the degree of peptide charging of the MHC class I heavy chain m heterodimers determined the infection phenotype of cell lines. To assess the biological relevance of proper MHC class I expression we investigated CMV infection in m-deficient mice which fail to express ternary MHC class I complexes and lack peripheral CD8 T lymphocytes. We found that organ virus titres and virus clearance kinetics were not altered in m mutant mice. In addition, there was no indication of diminished virus propagation in m embryonic fibroblasts. m mice suffered from the lack of CD8 T lymphocytes that was partially compensated for by the function of CD4 T lymphocytes. An organ-specific anti-virus function of natural killer (NK) cells was observed, independent from the m deletion. The immune control unique for salivary gland infection was maintained. From the data presented here, we confirm the role of MHC class I molecules in the immune surveillance of CMV infection but question the biological impact of correct MHC class I complexes for productive infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-77-2-217
1996-02-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/77/2/JV0770020217.html?itemId=/content/journal/jgv/10.1099/0022-1317-77-2-217&mimeType=html&fmt=ahah

References

  1. Allen H., Fraser J., Flyer D., Calvin S., Flavell R. 1986; Beta-2 microglobulin is not required for cell surface expression of the murine class I histocompatibility antigen H-2Db or of a truncated Db . Proceedings of the National Academy of Sciences, USA 83:7447–7451
    [Google Scholar]
  2. Apasov S., Sitkovsky M. 1993; Highly lytic CD8+, αβ T-cell receptor cytotoxic T cells with major histocompatibility complex (MHC) class I antigen-directed cytotoxicity in β2-microglobulin, MHC class I-deficient mice. Proceedings of the National Academy of Sciences, USA 90:2837–2841
    [Google Scholar]
  3. Beersma M. F. C., Wertheim van Dillen P. M. E., Geelen J. L. M. C., Feltkamp T. E. W. 1991; Expression of HLA class I heavy chain and β2-microglobulin does not affect human cytomegalovirus infectivity. Journal of General Virology 72:2757–2764
    [Google Scholar]
  4. Bender B. S., Croghan T., Zhang L., Small P. A. Jr 1992; Transgenic mice lacking class I major histocompatibility complex-restricted T cells have delayed viral clearance and increased mortality after influenza virus challenge. Journal of Experimental Medicine 175:1143–1145
    [Google Scholar]
  5. Chalmer J. E., Mackenzie J. S., Stanley N. F. 1977; Resistance to murine cytomegalovirus linked to the major histocompatibility complex of the mouse. Journal of General Virology 37:107–114
    [Google Scholar]
  6. Cobbold S. P., Jayasuriya A., Nash A., Prospero T. D., Waldman H. 1984; Therapy with monoclonal antibodies by elimination of T-cell subsets in vivo . Nature 312:548–550
    [Google Scholar]
  7. Correa I., Bix M., Liao N.-S., Ziilstra M., Jaenisch R., Raulet D. 1992; Most;γδ T cells develop normally in β2-microglobulin-deficient mice. Proceedings of the National Academy of Sciences, USA 89:653–657
    [Google Scholar]
  8. Denkers E. Y., Gazzinelli R. T., Martin D., Sher A. 1993; Emergence of NK 1.1+ cells as effectors of IFN-γ dependent immunity to Toxoplasma gondii in MHC class I-deficient mice. Journal of Experimental Medicine 178:1465–1472
    [Google Scholar]
  9. Eichelberger M., Allan W., Zijlstra M., Jaenisch R., Doherty P. C. 1991; Clearance of influenza virus respiratory infection in mice lacking class I major histocompatibility complex-restricted CD8+ T cells. Journal of Experimental Medicine 174:875–880
    [Google Scholar]
  10. Grundy J. E., McKeating J. A., Griffiths P. D. 1987a; Cytomegalovirus strain AD 169 binds β2-microglobulin in vitro after release from cells. Journal of General Virology 68:777–784
    [Google Scholar]
  11. Grundy J. E., McKeating J. A., Ward P. J., Sanderson A. R., Griffiths P. D. 1987b; β2-microglobulin enhances the infectivity of cytomegalovirus and when bound to the virus enables class I HLA molecules to be used as a virus receptor. Journal of General Virology 68:793–803
    [Google Scholar]
  12. Hansen T. H., Myers N. B., Lee D. R. 1988; Studies of two antigenic forms of Ld with disparate β2-microglobulin associations suggests that β2m facilitates the folding of the alpha 1 and alpha 2 domains during de novo synthesis. Journal of Immunology 140:3522–3527
    [Google Scholar]
  13. Hengel H., Lučin P., Jonjić S., Ruppert S., Koszinowski U. H. 1994; Restoration of cytomegalovirus antigen presentation by gamma interferon combats viral escape. Journal of Virology 68:289–297
    [Google Scholar]
  14. Hoglund P., Glas R., Ohlen C., Ljunggren H.-G., Karre K. 1991a; Alteration of the natural killer repertoire in H-2 transgenic mice, specificity of rapid lymphoma cell clearance determined by the H-2 phenotype of the target. Journal of Experimental Medicine 174:327–334
    [Google Scholar]
  15. Hoglund P., Ohlen C., Carbone E., Franksson L., Ljungren H.-G., Latour A., Koller B., Karre K. 1991b; Recognition of β2, -microglobulin-negative (β2m) T-cell blasts by natural killer cells from normal but not from β m mice, nonresponsiveness controlled by β2 m bone marrow in chimeric mice. Proceedings of the National Academy of Sciences, USA 88:332–336
    [Google Scholar]
  16. Jonjić S., Del Val M., Keil G. M., Reddehase M. J., Koszinowski U. H. 1988; A nonstructural viral protein expressed by a recombinant vaccinia virus protects against lethal cytomegalovirus infection. Journal of Virology 62:1653–1658
    [Google Scholar]
  17. Jonjić S., Mutter W., Weiland G., Reddehase M. J., Koszinowski U. H. 1989; Site-restricted persistent cytomegalovirus infection after selective long-term depletion of CD4-positive T-lymphocytes. Journal of Experimental Medicine 169:1199–1212
    [Google Scholar]
  18. Jonjić S., Pavić I., Lčcin P., Rukavina D., Koszinowski U. H. 1990; Efficacious control of cytomegalovirus infection after longterm depletion of CD8+ T lymphocytes. Journal of Virology 64:5457–5465
    [Google Scholar]
  19. Jonjić S., Pavić I., Polić B., Crnković I., Lučin P., Koszinowski U. H. 1994; Antibodies are not essential for the resolution of primary cytomegalovirus infection but limit dissemination of recurrent virus. Journal of Experimental Medicine 179:1713–1717
    [Google Scholar]
  20. Klein-Schneegans A. S., Gaveriaux C., Fonteneau P., Loor F. 1989; Indirect double sandwich ELISA for the specific and quantitative measurement of mouse IgM, IgA and IgG subclasses. Journal of Immunological Methods 119:117–125
    [Google Scholar]
  21. Kohler G., Lindhal K. F., Neusser C. 1981; Characterization of a monoclonal anti-H-2Kb antibody. Immune System 2:202–208
    [Google Scholar]
  22. Koo G. C., Dumont F. J., Tutt M., Hackett J., Kumar V. 1986; The NK1.1-mouse, a model to study differentiation of murine NK cells. Journal of Immunology 137:3742–3747
    [Google Scholar]
  23. Lehmann-Grube F., Dralle H., Untermohlen O., Lohler J. 1994; MHC class I molecule-restricted presentation of viral antigen in β2m-microglobulin-deficient mice. Journal of Immunology 153:595–603
    [Google Scholar]
  24. Liao N.-S., Bix M., Zijlstra M., Jaenisch R., Raulet D. 1991; MHC class I deficiency, susceptibility to natural killer (NK) cells and impaired NK activity. Science 253:199–202
    [Google Scholar]
  25. Ljunggren H.-G., Karre K. 1990; In search of the ‘missing self’, MHC molecules and NK recognition. Immunology Today 11:237–243
    [Google Scholar]
  26. Ljunggren H.-G., Stam N. J., Ohlen C., Neefjes J. J., Hoglund P., Heemels M.-T., Bastin J., Schumacher T. N. M., Townsend A., Karre K., Ploegh H. L. 1990; Empty MHC class I molecules come out in the cold. Nature 346:476–480
    [Google Scholar]
  27. Lučin P., Pavić L., Polić B., Jonjić S., Koszinowski U. H. 1992; Gamma interferon-dependent clearance of cytomegalovirus infection in salivary glands. Journal of Virology 66:1977–1984
    [Google Scholar]
  28. McKeating J. A., Griffiths P. D., Grundy J. E. 1987; Cytomegalovirus in urine specimens has host β2-microglobulin bound to the viral envelope: a mechanism of evading the host immune response?. Journal of General Virology 68:785–792
    [Google Scholar]
  29. Osborn J. E., Walker D. L. 1970; Virulence and attenuation of murine cytomegalovirus. Infection and Immunity 3:228–236
    [Google Scholar]
  30. Ozato K., Hansen T. H., Sachs D. H. 1980; Monoclonal antibodies to mouse MHC antigens, antibodies to H-2Ld antigen, the products of a 3rd polymorphic locus of the mouse major histocompatibility complex. Journal of Immunology 125:2473–2477
    [Google Scholar]
  31. Pavić I., Polić B., Crnković I., Lučin P., Jonjić S., Koszinowski U. H. 1993; Participation of endogenous tumour necrosis factor alpha in host resistance to cytomegalovirus infection. Journal of General Virology 74:2215–2223
    [Google Scholar]
  32. Price P. 1994; Are MHC proteins cellular receptors for CMV?. Immunology Today 15:295–296
    [Google Scholar]
  33. Price P., Gibbons A. E., Shellam G. R. 1990; H-2 class I loci determine sensitivity to MCMV in macrophages and fibroblasts. Immunogenetics 32:20–26
    [Google Scholar]
  34. Raulet D. H. 1994; MHC class-I-deficient mice. Advances in Immunology 55:381–421
    [Google Scholar]
  35. Reddehase M. J., Keil G. M., Koszinowski U. H. 1984; The cytolytic T lymphocyte response to the murine cytomegalovirus. I. Distinct maturation stages of cytolytic T lymphocytes constitute the cellular immune response during acute infection of mice with the murine cytomegalovirus. Journal of Immunology 132:482–489
    [Google Scholar]
  36. Reddehase M. J., Weiland F., Munch K., Jonjic S., Luske A., Koszinowski U. H. 1985; Interstitial murine cytomegalovirus pneumonia after irradiation, characterization of cells that limit viral replication during established infection of the lungs. Journal of Virology 55:264–273
    [Google Scholar]
  37. Reddehase M. J., Balthesen M., Rapp M., Jonjic S., Pavic I., Koszinowski U. H. 1994; The conditions of primary infection define the load of latent viral genome in organs and the risk of recurrent cytomegalovirus disease. Journal of Experimental Medicine 179:185–193
    [Google Scholar]
  38. Rock K. L., Gamble S., Rothstein L., Gramm C., Benacerraf B. 1991; Dissociation of β-2 microglobulin leads to the accumulation of a substantial pool of inactive class I MHC heavy chains on the cell surface. Cell 65:611–620
    [Google Scholar]
  39. Spriggs M. K., Koller B. H., Sato T., Morrissey P. J., Fanslow W. C., Smithies O., Voice R. F., Widmer M. B., Maliszewski C. R. 1992; β2-microglobulin-, CD8+ T-cell-deficient mice survive inoculation with high doses of vaccinia virus and exhibit altered IgG responses. Proceedings of the National Academy of Sciences, USA 89:6070–6074
    [Google Scholar]
  40. Williams D. B., Barber B. H., Flavell R. A., Allen H. 1989; Role of β2-microglobulin in the intracellular transport and surface expression of murine class I molecules. Journal of Immunology 142:2796–2806
    [Google Scholar]
  41. Wykes M. N., Price P., Shellam G. R. 1992; The effects of β2 microglobulin on the infectivity of murine cytomegalovirus. Archives of Virology 123:59–72
    [Google Scholar]
  42. Wykes M. N., Shellam G. F., McCluskey J., Kast W. M., Dallas P. B., Price P. 1993; Murine cytomegalovirus interacts with major histocompatibility complex class I molecules to establish cellular infection. Journal of Virology 67:4182–4189
    [Google Scholar]
  43. Zijlstra M., Li E., Sajjadi F., Subramani S., Jaenisch R. 1989; Germ-line transmission of a disrupted β2-microglobulin gene produced by homologous recombination in embryonic stem cells. Nature 342:435–438
    [Google Scholar]
  44. Zijlstra M., Bix M., Simister N. E., Loring J. M., Raulet D. H., Jaenisch R. 1990; β2-microglobulin deficient mice lack CD4 8+ cytolytic T cells. Nature 344:742–746
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-77-2-217
Loading
/content/journal/jgv/10.1099/0022-1317-77-2-217
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error