Survey of major genotypes and subtypes of hepatitis C virus using RFLP of sequences amplified from the 5' non-coding region

A method is described for identifying different genotypes of hepatitis C virus (HCV) by restriction endonuclease cleavage of sequences amplified by PCR from the 5' non-coding region. Using the enzymes HaeIII-RsaI and HinfI-MvaI, followed by cleavage with BstU1 or ScfI, it was possible to identify and distinguish HCV genotypes 1a, 1b, 2a, 2b, 3a, 3b, 4, 5 and 6. The method was used to investigate the prevalence of these genotypes in 723 blood donors in 15 countries, the largest survey to date, and one which covered a wide range of geographical regions (Europe, America, Africa and Asia). These results, combined with a review of the existing literature, indicate the existence of several distinct regional patterns of HCV genotype distribution, and provide the framework for future detailed epidemiological investigations of HCV transmission.

Introduction

In order to understand the epidemiology of hepatitis C virus (HCV) infection, the identification of virus genotypes provides a useful method to compare HCV in different geographical regions and in different age, risk and racial groups (McOmish et al., 1994; Dusheiko et al., 1994; Murphy et al., 1994; Woodfield et al., 1994; Kletter et al., 1994; Lee et al., 1994; Tismanetzky et al., 1994; Viazov et al., 1994). According to recent proposals, variants of HCV can be classified into a total of six major genotypes, many of which contain a number of more closely related subtypes (Simmonds et al., 1993a, 1994a; Homes et al., 1993; Bukh et al., 1993). Initial findings indicate major biological differences between genotypes: for example, preliminary studies show that individuals infected with different genotypes respond differently to treatment with interferon (reviewed by Dusheiko & Simmonds, 1994). Should these findings be confirmed, the existence of geographical variation in the predominant circulating genotypes in different communities would lead to the adoption of different treatment policies for patient management. Furthermore, the documented antigenic differences between HCV genotypes (McOmish et al., 1993, 1994) would have implications for blood donor screening and for the design and composition of future candidate vaccines for HCV in different countries.

We have previously described a method by which the different major genotypes of HCV may be identified by
cleavage of the amplified 5' non-coding region (5'NCR) using restriction enzymes that recognize sequence polymorphisms between HCV genotypes (McOmish et al., 1993). This method suffered from two major drawbacks in comparison with other typing methods. Firstly, although it could reliably identify all six major genotypes of HCV, it was unable to separately identify HCV subtypes, which themselves might show important epidemiological or biological differences. Secondly, the method was dependent upon the electrophoresis of radiolabelled DNA fragments on acrylamide gels involving considerable expenditure on equipment and radioisotopes, and being technically relatively difficult and time-consuming.

In the current study, we have modified the assay to allow the identification of subtypes la, lb, 2a, 2b, 3a and 3b, as well as types 4, 5 and 6. DNA fragments were separated on high resolution agarose gels, so that the need for radioisotopic labelling of DNA was eliminated. This modified assay was used to identify the main genotypes infecting populations in a total of 15 countries, representing Europe, Asia, Australia, Africa and the USA. The method described is a rapid and reliable method for surveying HCV genotype distributions in a wide range of settings.

Methods

Samples. Samples used for this survey were obtained from 723 volunteer blood donors from 15 countries. Donors were in each case screened using second generation enzyme immunoassays (EIAs); samples that were reactive were amplified by PCR as described below. Details of samples used from Scotland, Netherlands, Finland, Hungary, Australia, Japan, Taiwan, Hong Kong and Egypt have been previously described (McOmish et al., 1994). The additional samples from the USA, Macau, Singapore, Thailand and Malaysia were screened by Abbott second generation EIA. Donors in Johannesburg, South Africa, were screened by UBI ELISA, while donors in Durban, South Africa, were screened by a combination of Ortho second generation and UBI ELISA as previously described (Kew et al., 1990).

Samples from the USA, Singapore and Thailand were not subjected to confirmatory antibody testing; for the USA, 119 repeat reactive samples yielded 54 that were PCR-positive; for Singapore 11/40, and for Thailand 77/90 tested were PCR-positive; however, one sample from Thailand and one other from Singapore failed to reamplify from
predicted on the basis of the RFLP pattern. Except for a single type 1a virus (DK9) the presence of a G at position -99 produces a sequence in one reaction and with ScrFI alone (Fig. 2i). Type 2c, a third subtype of type 2 (Simmonds et al., 1993a; Bukh et al., 1993), has a 5'NCR sequence similar to that of type 2a viruses and three out of four sequences are expected to give ScrFI electropherotype D and one electropherotype E (eight viruses) or F (one virus), with all eight type 2a viruses having electropherotype D (McOmish et al., 1994). Since there are no Hinfl restriction sites in the type 2 5'NCR sequence, the same electropherotypes will be produced by digestion with ScrFI alone (Fig. 2ii). Type 2c, a third subtype of type 2 (Simmonds et al., 1993a; Bukh et al., 1993), has a 5'NCR sequence similar to that of type 2a viruses and three out of four sequences are expected to give ScrFI electropherotype D and one electropherotype E (Simmonds et al., 1994b). Thus, types 2a and 2b can be distinguished from each other by RFLP analysis with ScrFI, while type 2c viruses may be misclassified as either type 2a or 2b. Additional sequence data will help to establish whether it would be possible in the future to modify the assay to allow type 2c to be separately identified.

Few 5'NCR sequences are available for type 3 subtypes other than type 3a (Tokita et al., 1994). All 16 type 3a 5'NCR sequences have a C to U substitution at position -164 and a G to A substitution at position -121 (Simmonds et al., 1994b; Tokita et al., 1994) destroying ScrFI restriction sites. These substitutions are also present in single examples of types 3c, 3d and 3e but are not found in the two sequences from types 3b (Tokita et al., 1994) (K. Chayama and others: GenBank accession number D11443), and in 3f (Tokita et al., 1994), producing ScrFI electropherotypes G and A respectively (McOmish et al., 1993) (Fig. 2iii).

Survey of HCV genotypes in blood donors

RNA from samples of 723 blood donors from 15 countries was amplified in the 5'NCR, and the product cleaved with HaeIII-RsaI and MvaI-HinfI in two separate reactions. Those samples identified as type 1...
were further examined by cleavage with BstUI, while type 2 and type 3 samples were cleaved with ScrFI. The cleavage patterns of the DNA fragments were determined by agarose gel electrophoresis; examples of some of the restriction patterns are shown in Fig. 1.

Europe. Types 1, 2 and 3 were the predominant genotypes infecting blood donors throughout Europe. In particular, there was a relatively high frequency of type 1a and 3a infection in the north-western countries (Scotland, Eire and Finland) that contrasts with the more frequent type 1b infections in blood donors and patients from Hungary (Table 1), Germany, Russia and Turkey (Viazov et al., 1994), and in blood transfusion recipients in Estonia (unpublished data).

We have previously remarked upon the similarity in genotype distribution between Australia (Perth) and Scotland or other northern-European countries (McOmish et al., 1994). Using the modified typing assay, we have now found that the relative frequencies of type 1a to 1b, and of 2a to 2b were also similar. In North America, type 1a was the most frequent genotype infecting blood donors in Pittsburgh; varying proportions of type 1a to 1b have been found in NANB patients elsewhere in the USA (Lau et al., 1994) and in Canada (Andonov & Chaudhary, 1994) [65% and 34% (this study); 68% and 82% in other studies respectively], while type 3a infection was rare (4.7%), consistent with previous reports (Lau et al., 1994; Andonov & Chaudhary, 1994; Murphy et al., 1994). Although types 1a and 1b have been described as the ‘American’ and ‘Japanese’ types (Pozzato et al., 1991, 1994), these terms are misleading as type 1b accounts for 13–27% of HCV infections in North America, and is the predominant genotype in many countries in Europe (McOmish et al., 1994; Viazov et al., 1994). Similarly, type 1a is not confined to America.

Far-East and South-East Asia. Major intra-regional differences in genotype distribution are apparent. In Japan and Taiwan, types 1b, 2a and 2b were the only variants detected (Table 1, Fig. 3). The absence of 1a contrasts strongly with Europe and North America, but is consistent with previously published investigations, where it has been reported that this genotype is only found in haemophiliacs treated with imported (USA origin) factor VIII and IX concentrates (Hijikata et al., 1990; Kinoshita et al., 1993). We previously reported the finding of a high frequency of type 6a infection in Hong Kong (McOmish et al., 1994). We have now found this genotype to also account for approximately 30% of HCV infections in blood donors in Macau; there is now preliminary evidence that this genotype is more widely distributed in this region, for example in Vietnam.
Table 1. Genotype distributions in 15 countries identified by RFLP assay

<table>
<thead>
<tr>
<th>Region</th>
<th>Country</th>
<th>Centre</th>
<th>No. of samples</th>
<th>HCV genotype</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1a*</td>
</tr>
<tr>
<td>Europe</td>
<td>Scotland (National)</td>
<td>144</td>
<td>56</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Finland (National)</td>
<td>12</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Netherlands</td>
<td>31</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Hungary (National)</td>
<td>45</td>
<td>6</td>
<td>38</td>
</tr>
<tr>
<td>Far-East</td>
<td>Taiwan Taichung</td>
<td>93</td>
<td>52</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Japan Fukuoka</td>
<td>40</td>
<td>-</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Hong Kong</td>
<td>35</td>
<td>1</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Macau</td>
<td>27</td>
<td>2</td>
<td>13</td>
</tr>
<tr>
<td>South-East Asia</td>
<td>Singapore</td>
<td>10</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Malaysia Kuala Lumpur</td>
<td>25</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Thailand Bangkok</td>
<td>76</td>
<td>10</td>
<td>24</td>
</tr>
<tr>
<td>Other</td>
<td>Australia Perth</td>
<td>24</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>South Africa</td>
<td>63</td>
<td>3</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Durban</td>
<td>25</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>USA Pittsburg</td>
<td>54</td>
<td>27</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Egypt</td>
<td>19</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total...</td>
<td></td>
<td>723</td>
<td>134</td>
<td>251</td>
</tr>
</tbody>
</table>

* Variants producing cleavage pattern A with BsuUI are referred to as type 1a, while those producing pattern B are referred to as type 1b. Other subtypes of type 1 produce pattern A (see text).
† Variants producing cleavage pattern D or E/F with ScrFI are referred to as type 2a or 2b. The four known type 2c sequences produce patterns D or E (see text).
‡ Variants producing cleavage pattern G or A with ScrFI are referred to as type 3a or 3b (see text).
NA, Not applicable.

Fig. 3. Cartographic representation of distribution of HCV genotypes in the Far-East. Pointers indicate the location of the Blood Donor Centre in the countries participating in the survey. Graphs show numbers (y-axis) of each of the six major genotypes of HCV (x-axis). For types 1, 2 and 3, numbers of subtypes are shown by shading of the histogram: □, subtype a; ■, subtype b.)
This paper describes the optimization and simplification of an existing typing method based upon RFLP of the 5′NCR for identification of genotypes. In common with other techniques, such as the use of type-specific probes in the 5′NCR (Stuyver et al., 1993), or the use of genotype-specific PCR primers in the core region (Okamoto et al., 1992), the RFLP method is dependent upon the existence of a relatively small number of nucleotide sequence differences between known examples of different genotypes. One of the advantages of using the 5′NCR for genotyping is the existence of a few identifiable polymorphisms between major genotypes that reliably associate with examples of the known genotypes (Simmonds et al., 1994b), and for which it is relatively straightforward to design combinations of restriction enzymes that recognize them. Furthermore, the 5′NCR is the region of choice for detection and quantification of HCV in vivo, and the RFLP assay can be conveniently added on to conventional PCR methods used for diagnosis.

It is likely that typing methods (including RFLP) will have to be continuously modified to accommodate the rapidly increasing database of information collected on HCV sequence heterogeneity. The existence of numerous subtypes of type 1 (Okamoto et al., 1994; Simmonds et al., 1993b), 3 (Tokita et al., 1994) and 4 (Bukh et al., 1994), and the description of new major genotypes in South-East Asia (Hotta et al., 1994; Apichartpiyakul et al., 1994; Hadiwandowo et al., 1994) hints at a complexity in genotype distribution not generally found in Western countries, and which potentially affects the accuracy of any survey based upon typing assays. For example, recent reports describe the detection of HCV variants in Thailand and Indonesia that differ from those classified as genotypes 1 to 6 (Tokita et al., 1994; Hadiwandowo et al., 1994). We therefore have to be cautious in the interpretation of the results from Thailand, Macau, Singapore and possibly Taiwan reported here, as it is possible that a proportion of individuals may be infected with novel variants of HCV that produce RFLP patterns resembling other genotypes.

However, the existing assay provides an accurate and inexpensive method for the identification of HCV genotypes 1 to 6 in population screening, and is sufficiently accurate in most populations to be of value as part of pre-treatment assessment of patients undergoing interferon treatment. Our ongoing work is designed to further refine the assay to allow the identification of further HCV genotypes and subtypes, and to extend the survey to areas of the world where little information is currently available.

Note added in proof. Since submission of the manuscript, novel HCV variants that produce RFLP patterns corresponding to type 1a or type 1b have been found in Thailand, similar to those reported from Vietnam. The extent and geographical distribution of these new genotypes in south-east Asia are currently being investigated using an RFLP method based upon the core region.
The authors are indebted to the following for assistance in carrying out the donor survey: Dr A M Al-Rasheed and Debbie Rankin, Riyadh Armed Forces Hospital; W-T Liu, School of Medical Technology, National Yang-Ming Medical College, Taipei and W S Lin, Taichung Blood Donation Centre, Taichung, Taiwan; Drs C Seed, T J Cobain, J Andrews, V Shanahan and D Kay, Blood Transfusion Service, Perth, Australia; I Coote and H Munro, Ruchill Hospital, Glasgow, UK; R Crooke and staff at the South African Blood Transfusion Service, Johannesburg; and A N Neill, Natal Institute of Immunology, Durban, South Africa. The work in Scotland was funded by the Scottish National Blood Transfusion Service and the Medical Research Council (grant number G9020615). We are grateful to Professor J D Cash for continued support and encouragement. Fiona Davidson was formerly known as MoCmish.

References

(Received 31 October 1994; Accepted 13 January 1994)