Nucleotide sequence of one component of the banana bunchy top virus genome contains a putative replicase gene

Robert M. Harding,¹ Thomas M. Burns,¹ Gregory Hafner,¹ Ralf G. Dietzgen² and James L. Dale¹*

¹Centre for Molecular Biotechnology, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001 and ²Plant Protection Division, Queensland Department of Primary Industries, Indooroopilly, Queensland, Australia

One DNA component of the banana bunchy top virus (BBTV) genome was cloned and sequenced. This component is present as a circular, ssDNA in the virions and consists of 1111 nucleotides. It contains one large open reading frame (ORF) of 858 nucleotides in the virion sense; this ORF encodes a putative replicase based on the presence of a dNTP-binding motif (GGEGKT). Two smaller ORFs (249 and 366 nucleotides), in the complementary orientation, could not be assigned any obvious function. Neither of these ORFs had significant sequence homology with any known DNA plant virus gene or gene product. Computer analysis of this component-predicted a strong stem-loop structure in the virion sense putative untranslated region; a nonanucleotide sequence in the loop was nearly identical to the nonanucleotide invariant loop sequence of geminiviruses and coconut foliar decay virus. There is strong evidence that the genome of BBTV consists of more than one component because no ORF was found that would encode a protein the size of the BBTV coat protein. BBTV has some characteristics in common with geminiviruses but cannot be classified as one. Rather, BBTV probably belongs to an undescribed plant virus group which could also include subterranean clover stunt virus and coconut foliar decay virus.

Introduction

Banana bunchy top disease is the most serious virus disease affecting bananas (Musa spp.). Originally it was assumed to be caused by a luteovirus on the basis of the biological characteristics of the disease: it is persistently transmitted by aphids, causes a yellows type disease and infected plants have damaged phloem (Dale, 1987). Further evidence for the involvement of a luteovirus included (i) association of dsRNA with the disease (Dale et al., 1986), (ii) purification of 28 nm isometric virus-like particles (VLPs) from infected plants (Iskra et al., 1989) and (iii) purification of 20 to 22 nm isometric VLPs containing ssRNA with an M_r of 2.0×10^6 from infected plants (Wu & Su, 1990). However, Harding et al. (1991) and Thomas & Dietzgen (1991) purified 18 to 20 nm isometric VLPs from infected plants and these particles contained ssDNA of about 1 kb. SCSV is persistently transmitted by aphids, whereas CFDV is transmitted by a planthopper. Furthermore, the genome of SCSV is composed of at least seven distinct ssDNA molecules each containing circular ssDNA of approximately 1 kb. SCSV is persistently transmitted by aphids, whereas CFDV is transmitted by a planthopper. Furthermore, the genome of SCSV is composed of at least seven distinct ssDNA molecules each containing one large open reading frame (ORF) (Chu et al., 1990). The sequence of one ssDNA molecule of CFDV has been determined (Rohde et al., 1990) and one of the ORFs encodes a putative replicase. There are also three animal-infecting viruses that have similar characteristics to BBTV, SCSV and CFDV, namely porcine circovirus (PCV), chicken anaemia virus (CAV) and psittacine beak and feather disease virus (PBFDV) (Todd et al., 1991).

In this paper, we report the cloning, sequencing and analysis of one component of BBTV DNA.

Methods

Sequencing. Mini-preparations of pBT338 (Harding et al., 1991) were prepared by alkaline lysis followed by polyethylene glycol precipitation (Hattori & Sakaki, 1986). Sequencing was done using particle
Fig. 1. Strategy for sequencing clones of BBTV component 1. The genome is represented by the black rectangle and the plasmid vector is represented by the grey rectangle. The arrows indicate the direction and extent of sequencing.

\[^{32}P\]dCTP and a Sequenase kit (US Biochemicals) as recommended by the manufacturer. Reaction products were analysed on an 8% (w/v) polyacrylamide gel containing 7 M-urea. Gels were fixed, dried and the manufacturer. Reaction products were analysed on an 8% (w/v) polyacrylamide gels (5% stacking gel/10% resolving gel) using the buffer system of Laemmli (1970) without SDS. Nucleic acids were visualized with ethidium bromide and the size of the amplified product was determined by PAGE; a single amplified product was evident with a size of approximately 0.1 kb which appeared to be a full-length double-stranded copy of the template DNA (Fig. 2). This result provided strong evidence that the virion ssDNA of BBTV was circular. Furthermore it was assumed that this product represented the full sequence of one DNA component of the BBTV genome for the following reasons: (i) it was the only amplification product of a PCR that should yield full-length product from a circular template and (ii) it was approximately the size of the ssDNA extracted from purified BBTV virions.

The amplified product was ligated directly into the plasmid vector, pCR2000, using a TA cloning kit (Invitrogen) as recommended by the manufacturer. Potential recombinant clones were identified by screening on X-gal substrate, and virus-specific clones were subsequently identified by screening purified plasmids with \(^{32}P\)-labelled insert from pBT338 (Harding et al., 1991). Plasmids that hybridized with the pBT338 insert and contained the largest inserts were selected for sequencing.

\textit{Polarity of virion ssDNA.} Purified viral nucleic acid (Harding et al., 1991) was electrophoresed in either 1% agarose gels in Tris-acetate-EDTA buffer, pH 7.8 (Maniatis et al., 1982) or in discontinuous polyacrylamide gels (5% stacking gel/10% resolving gel) using the buffer system of Laemmli (1970) without SDS. Nucleic acids were visualized with ethidium bromide and the size of the amplified product was estimated by comparison with a BglI/HindIII digest of pBR328 (Boehringer Mannheim).

The amplified product was cloned directly into the plasmid vector, pCR2000, using a TA cloning kit (Invitrogen) as recommended by the manufacturer. Potential recombinant clones were identified by screening on X-gal substrate, and virus-specific clones were subsequently identified by screening purified plasmids with \(^{32}P\)-labelled insert from pBT338 (Harding et al., 1991). Plasmids that hybridized with the pBT338 insert and contained the largest inserts were selected for sequencing.

![Diagram](image-url)
Fig. 3. Nucleotide sequence of BBTV component 1 ssDNA (virion pBTPCR7 and -11 was replaced by a G in pBTPCR12 underlined; the potential TATA box is in bold and boxed; the potential represented. The potential stem-loop sequence is in bold and italic. The dNTP-binding motif (GGEGKT) is in bold italics and underlined.

recombinants (pBTPCR7, -11 and -12) were selected and the inserts sequenced in both orientations. Each insert was 1111 bp and contained the 980 bp sequence from pBT338. The sequences, however, were not identical. There were five nucleotide differences between the four clones. Two of these five differences resulted in a recombinants (pBTPCR7, -11 and -12) were selected and the inserts sequenced in both orientations. Each insert was 1111 bp and contained the 980 bp sequence from pBT338. The sequences, however, were not identical. There were five nucleotide differences between the four clones. Two of these five differences resulted in a potential amino acid change in ORF-V1. At nucleotide 256, the A in pBT338, pBTPCR7 and -11 was replaced by a T in pBTPCR12 resulting in the replacement of an asparagine residue by arginine residue; at nucleotide 508, the A in pBT338, pBTPCR7 and -11 was replaced by a T in pBTPCR12 resulting in the replacement of a histidine residue by an arginine residue; at nucleotide 701, A occurred in pBT338 and pBTPCR11 whereas a T occurred in pBTPCR7 and -12; at nucleotide 1045, C occurred in pBT338 and pBTPCR11 whereas A occurred in pBTPCR7 and -12. It is not known whether these sequence variations were due to the fidelity of the DNA polymerases used to generate the clones, or reflected genuine sequence variations in the viral genome. In most instances, the sequence obtained from pBT338 was the most common and was used to derive the final sequence for BBTV DNA component 1 (Fig. 3).

To determine which sequence orientation of the BBTV component 1 ssDNA was present in virions, BBTV ssDNA was extracted from purified virions, electrophoresed through agarose and transferred to nylon membranes. These membranes were incubated with one of two 32P end-labelled primer A (a) or primer B (b). Lanes 1, pBT338; lanes 2, pBT338 insert (EcoRI/PstI digest); lanes 3, BBTV virion ssDNA.

Fig. 4. Southern blot analysis to determine the orientation of BBTV component 1 ssDNA. BBTV virion ssDNA hybridized with 32P end-labelled primer A (a) and primer B (b). Lanes 1, pBT338; lanes 2, pBT338 insert (EcoRI/PstI digest); lanes 3, BBTV virion ssDNA.
Fig. 5. Schematic representation of BBTV component 1 ORFs potentially coding for proteins of approximately 10K or greater: ORF-V1 occurs in the virion orientation whereas ORFs C1 and C2 occur in the complementary orientation. Positions of the stem-loop sequence and the potential ORF-V1 TATA box are indicated.

Discussion

We have demonstrated that the virions of BBTV contain circular ssDNA of approximately 1-1 kb using a PCR strategy that would amplify dsDNA from BBTV virion ssDNA only if this template were circular. The advantages of this strategy were (i) it was an efficient method for generating linear, full-length dsDNA using BBTV virion ssDNA as a template in a form suitable for cloning, (ii) only a small amount of sequence information was required from anywhere within the BBTV component and (iii) if the resultant amplified product was of the expected BBTV component size, the presence of this product established the circularity of that component. This method should be useful for generating full-length dsDNA copies of other potential BBTV components, other ssDNA viruses such as SCSV and CFDV, geminiviruses and PCV and related viruses and perhaps other small circular DNA molecules, the size being limited by the efficiency of the PCR amplification.

We have sequenced one component, component 1, of the BBTV DNA genome from both the original cDNA clone (pBT338) and three full-length PCR clones. There was a strong stem-loop structure predicted in the virion orientation of component 1; the loop sequence of 11 nucleotides contained a nine nucleotide sequence (TAATATTAC) which was almost identical to the invariant loop sequence present in nine geminiviruses (TAATATTAC) (Lazarowitz, 1987) and also CFDV (TAGTATTAC) (Rohde et al., 1990), with only one nucleotide difference in each case. Evidence from the study of geminiviruses indicates that this sequence is involved in DNA replication (Revington et al., 1989). The stem sequence of BBTV component 1 varied from that of CFDV and the geminiviruses.

Component 1 contained three ORFs that potentially encoded proteins of approximately 10K or greater. The largest ORF (ORF-V1) occurred in the virion sense and potentially encoded a replicase as it contained the dNTP-binding motif G(GE)GKT. The G(X)GKT motif has been shown to be associated with both RNA and DNA virus replicases (Gorbalenya et al., 1990). BBTV ORF-V1 was similar to the largest ORF (ORF1) in the component of CFDV that has been sequenced (Rohde et al., 1990). Both ORFs were in the virion orientation with start codons 3' of the predicted stem-loop sequence; both ORFs had poly(A) signals starting 19 nucleotides 5' of the stop codon and possible TATA boxes 5' of the start codon (BBTV, TATAAA; CFDV, TATAAG); both ORFs potentially encoded proteins about 33K (BBTV ORF-V1, 33.6K; CFDV ORF1, 33.4K) and both these proteins had dNTP-binding motifs (BBTV, GGEGKT; CFDV, GGDGKS) starting at amino acid positions 183 and 184 respectively (Fig. 6). The two derived amino acid sequences were compared after alignment with the GCG PileUp program: there was 33% sequence similarity over the 286 amino acids of BBTV ORF-V1 with 47% sequence similarity over the 104 carboxy-terminal amino acids from the dNTP-binding motif. Conversely, there were no ORFs in the CFDV sequence that corresponded to BBTV ORF-C1 and ORF-C2 and no significant sequence similarity could be detected between these two BBTV ORFs and any CFDV ORF either at the nucleotide or amino acid level. Furthermore, a computer search failed to reveal any significant sequence similarity between these two BBTV ORFs and any published nucleotide or protein sequence. This would suggest that either BBTV component 1 and the CFDV component have different genome organizations or that BBTV component 1 and the CFDV component contain only one gene.

Only one recognized plant virus group has ssDNA as its genomic material, the geminiviruses. However, BBTV differs from the geminiviruses in a number of important
Fig. 6. A comparison of the potential translation products of BBTV component 1 ORF-V1 and CFDV ORF1 after alignment with the viruses have geminate virions), BBTV is transmitted by whiteflies), the unit size of the BBTV genome is about 1.1 kb in size (Todd et al., 1991); CAV and PCV have one virion-associated protein of 50K and 36K respectively and PBFDV has three virion-associated proteins of 15.9K, 23.7K and 26.3K (Ritchie et al., 1989). Furthermore, there was no significant sequence similarity between BBTV component 1 and CAV (Noteborn et al., 1991) either at the nucleotide or at the amino acid level.

We thank Mr Eric Gall and Mr Don Andersen of the Queensland Department of Primary Industries for BBTV-infected banana plants. This project was supported by the Australian Research Council and the Rural Industries Research and Development Corporation.

References

(Received 25 August 1992; Accepted 22 October 1992)