Modification of the Leader Protein (Lb) of Foot-and-Mouth Disease Virus

By D. V. SANGAR,1 * R. P. CLARK,2 A. R. CARROLL,1 D. J. ROWLANDS1 and B. E. CLARKE1

1Department of Virology, Wellcome Biotechnology Limited, Langley Court, Beckenham, Kent BR3 3BS and 2Coopers Animal Health Limited, Ash Road, Pirbright, Woking, Surrey GU24 ONQ, U.K.

(Accepted 2 June 1988)

SUMMARY

Translation of foot-and-mouth disease virus RNA for extended periods in rabbit reticulocyte lysates results in the appearance of a previously undescribed protein. A protein with similar properties can also be detected in BHK cells at late times after virus infection. Specific immunoprecipitation has shown that this protein (Lb') is closely related to the smaller of the two leader proteins, Lb, although it migrates with an apparently higher Mr in SDS-polyacrylamide gels. The conversion of Lb to Lb' can be mimicked by treatment with carboxypeptidase B. It is suggested that C-terminal trimming of Lb to produce Lb' results in an increase in negative charge and is responsible for its slower migration in SDS–PAGE.

INTRODUCTION

Foot-and-mouth disease viruses (FMDV) form the genus aphthovirus in the family Picornaviridae which also includes the entero-, rhinoviruses and cardioviruses. These viruses have genomes of positive sense ssRNA which, in the case of FMDV, is approx. 8.5 kb in length (Sangar, 1979; Clarke et al., 1987). The genome is expressed as a single polyprotein which is cleaved into mature proteins. The structural protein precursor region (P1) of the enteroviruses and rhinoviruses starts at the N terminus of the polyprotein (Dorner et al., 1982) but in the cardio- and aphthoviruses P1 is preceded by a short leader protein (L) (Sangar, 1979). The aphthoviruses are further characterized by the presence of two independent translation initiation AUG codons in the same reading frame and located 84 nucleotides apart. Both of these codons initiate protein synthesis in vivo and in vitro to produce alternative forms of the leader protein (Clarke et al., 1985; Sangar et al., 1987). The larger of these (Lab) is initiated from the first functional AUG and contains all of the sequence of the shorter leader (Lb) plus an N-terminal extension of 28 amino acids.

Little is known about the function of the leader proteins in FMDV but it may be relevant that the presence of two functional initiation codons is a highly conserved feature in viruses of all seven serotypes of the aphthoviruses (Sangar et al., 1987). The Lb has been shown to have a specific proteolytic activity (Strebel & Beck, 1986) but its only known function is to cleave the polyprotein at the Lb/P1 junction.

In this paper we describe a new protein (Lb') that can be detected both in vitro and in vivo and which is closely related to Lb. Although Lb' migrates more slowly than Lb on PAGE we believe that it is produced by proteolytic processing of Lb.

METHODS

Preparation of virus RNA. BHK cells were infected at an m.o.i. of approx. 100 (FMDV serotype A10 strain 61). After 3 h the infected cells were harvested and the virus RNA was purified as described previously (Rowlands et al., 1978).

Translation of RNA in vitro. The micrococcal nuclease-treated rabbit reticulocyte lysate of Pelham & Jackson (1976) was purchased from Amersham. RNA (1 µg) was added to 10 µl of lysate containing the appropriate radiolabel and the mixture incubated at 30 °C. Samples were treated with 10 µg RNase A before PAGE.
Labelling of virus-specific proteins in infected cells. Monolayers of BHK cells in 2 oz bottles were infected at an m.o.i. of approx. 100. Proteins were labelled at either 1 to 2 h or 2 to 3 h post-infection (p.i.) with the appropriate radioactive precursor. Cytoplasmic extracts for immunoprecipitation were made by lysing the cells in 1 ml of Eagle's medium containing 1% NP40 and 0.5% sodium deoxycholate. After 15 min on ice the nuclei were removed by centrifugation at 2000 g for 5 min and the supernatants were stored at -70 °C.

Synthesis of peptides and coupling to carrier protein. Peptides were synthesized by the method of B. E. Clarke & D. V. Sangar, unpublished data). These clones were constructed to contain 27 bases of linker sequence, 400 bases of 5' untranslated sequence and 2720 bases of coding sequence from FMDV. These transcripts should produce both leader proteins (Lab and Lb), and a truncated P1. Construction of the clone pRA6 is described in detail elsewhere (Clarke & Sangar, 1988). Briefly, it and pDS8 produce RNA transcripts which can only initiate translation at the second of the two AUG codons (i.e. Lb) of FMDV A1o. Thereafter pRA6 codes for the whole of P1, part of 2B, the third VPg, P3C and the N terminus of 3D. The construct pDS8 codes for the entire region from Lb through to the N terminus of 3D.

Production of RNA transcripts was essentially as described by Melton et al. (1984). Plasmid DNA (10 μg) was linearized with SacI (pTC6) or HindIII, extracted with phenol/chloroform and ethanol-precipitated. In vitro transcription was then carried out with 45 units of SP6 RNA polymerase (Promega Biotech, Madison, U.S.A.) for 2 h at 37 °C in the presence of 40 mM-Tris-HCl pH 7.5, 6 mM-MgCl₂, 2 mM-spermidine, 0.5 mM-rNTPs, 10 mM-dithiothreitol and 5 units of RNasin (Amersham). After transcription, template DNA was removed by incubation with 10 units of RNase-free DNase (RQ1 DNase; Promega Biotech) for 15 min at 37 °C. Transcripts were then phenol/chloroform-extracted, ethanol-precipitated and stored at -70 °C.

Enzyme treatment. In vitro translations were stopped by the addition of RNase A (10 μg) and incubating for 5 min at 30 °C. Enzyme treatment of this mixture was performed directly as described in Results.

RESULTS

Detection and characterization of a post-translationally modified FMDV protein

After in vitro translation of FMDV (A1o) RNA for 40 min the two leader proteins Lab and Lb, corresponding to the two alternative initiating AUGs, were detected. Both leader proteins were also present in infected BHK cells (Fig. 1). However, if in vitro incubation was extended to 4 h an additional protein, Lb', appeared on SDS-PAGE which migrated more slowly than Lb. Furthermore the migration of Lb' was dependent on gel concentration; in 10% gels it migrated slower than Lab but in 15% gels it migrated faster than Lab (Fig. 1).

Kinetics of Lb' appearance

In order to study the kinetics of appearance of this new protein recombinant plasmids pRA6 or pDS8 were used (see Methods) to produce subgenomic RNAs which translated extremely well in vitro (B. E. Clarke & D. V. Sangar, unpublished data). These clones were constructed to eliminate the initiation codon for Lab and therefore initiation occurred at the Lb AUG. The absence of Lab from the expressed protein profile facilitated the visualization of Lb'.
Modification of FMDV leader protein

Fig. 1. SDS-PAGE of proteins synthesized in vitro and in vivo. Separation was on 10% (a) or 15% (b) gels. Conditions for in vitro translation of FMDV RNA were as follows: 40 min at 2 mM-Mg²⁺ (lane 1), 240 min at 2 mM-Mg²⁺ (lane 2), 40 min at 4 mM-Mg²⁺ (lane 3) and 240 min at 4 mM-Mg²⁺ (lane 4). Lane 5 represents proteins from FMDV-infected BHK cells after 5 min pulse and lane 6 shows the same proteins after 5 min pulse and 30 min chase.

Fig. 2. Time course of the appearance of Lb' during in vitro translation. RNA obtained from clone pDS8 was translated for 25 min in a rabbit reticulocyte lysate. Translation was either stopped (lanes 2 to 7) by the addition of 1 µl RNase A (10 mg/ml) or allowed to continue (lanes 8 to 13). The incubation was stopped after 0 min (lanes 2 and 8), 10 min (lanes 3 and 9), 30 min (lanes 4 and 10), 60 min (lanes 5 and 11), 120 min (lanes 6 and 12) or 240 min (lanes 7 and 13). Lane 1 shows the translation products when RNase was added together with the RNA and incubated for 4 h. After RNase treatment the samples were separated by 10% PAGE and exposed to X-ray film.
Although Lb' was not detected after short periods of translation (Fig. 2, lanes 2, 8), continued protein synthesis was not required for its production. This was shown by inhibiting translation of pDS8 after 25 min with RNase A and incubating for increasing times. Lb' appeared with similar kinetics in the absence of concomitant protein synthesis (Fig. 2). The production of Lb' could, however, be greatly inhibited by dilution of the lysate at the time of RNase A addition. This is shown in Fig. 3 using a different clone, pRA6, which is structurally identical to pDS8 in the region coding for Lb/Lb'.

Translation in the presence of 4 mM-Mg\(^{2+}\) alters the ratio of leader proteins so that Lab is the major product formed; under these conditions Lb' was not observed (Fig. 1) thus suggesting that Lb is the precursor of Lb'. This was supported by the finding that \(^{35}\)S-methionine-labelled Lb and Lb' produced identical tryptic maps (data not shown) and also by the observation that subgenomic RNA that could code for Lb but not Lab still produced Lb'.
To investigate further the relationship between Lab, Lb and Lb', antiserum was raised to a synthetic peptide representing the 20 amino acids at the N terminus of Lb. This antiserum specifically immunoprecipitated [35S]methionine-labelled proteins corresponding to Lab, Lb and Lb' produced by translation both in vitro (data not shown) and in vivo (Fig. 4). The use of the antiserum was essential to distinguish the leader proteins synthesized in vivo from other viral and host proteins which otherwise obscured this region of the gel. This was particularly evident in lysates of cells labelled from 1 to 2 h p.i. The immunoprecipitated samples clearly showed proteins migrating in the positions of Lab, Lb and Lb' plus a minor band migrating with an apparently higher Mr (Fig. 4).

The ratio of Lab : Lb was similar in samples labelled from 1 to 2 h or from 2 to 3 h but the proportion of Lb' was greater in samples labelled from 2 to 3 h. However, Lb' was not seen in samples from cells labelled for 15 min at 2.5 h p.i. indicating that the production of Lb' was relatively slow (data not shown).

What is the modification of Lb?

As described above the modification of Lb to Lb' was more easily detected in translation products of SP6 transcripts from recombinant subgenomic clones. In order to study the nature of the modification a further clone, pTC6, was used for translation. In vitro transcripts from this plasmid contain the coding sequences for both leader proteins (Lab and Lb) and a truncated P1 only. In practice little of the truncated P1 protein is observed probably due to instability of the product; only the leader proteins are seen in significant amounts. Labelled translation products from pTC6 were therefore synthesized and analysed by two-dimensional gel electrophoresis (Fig. 5). The product (Lb') that appeared after prolonged incubation had a more negative charge than Lb. The product Lab also resolved into two species; however, the relative amounts of these did not alter with different times of translation and the charge change was less than that observed for the Lb to Lb' transition. We do not know the nature of the modification of Lab. The charge and gel migration differences between Lb and Lb' could be indicative of a chemical derivatization of Lb (Obijeski et al., 1974) which did not influence the profile of the tryptic maps of the two proteins. To investigate this possibility, a variety of radiolabelled precursors were added to both in vivo and in vitro translation systems. There was no detectable incorporation of any of the following precursors into either Lb or Lb': [32P]orthophosphate, [γ-32P]ATP, [α-32P]ATP, [α-32P]UTP, [3H]myristic acid, [3H]palmitic acid or [14C]acetyl-coenzyme A.

However, the addition of 2 μg of carboxypeptidase B to an in vitro lysate which contained mainly Lb resulted in the rapid loss of Lb and the appearance of Lb' (Fig. 6). This effect could be prevented by the addition of 1,10-phenanthroline (a known inhibitor of carboxypeptidase B; Folk et al., 1960) along with the protease (Fig. 6). The ‘natural’ conversion of Lb to Lb', i.e. that produced by extended incubation of the in vitro lysate, was not inhibited by 1,10-phenanthroline (data not shown).

DISCUSSION

Viruses from all FMDV serotypes initiate protein synthesis at two separate AUGs to produce alternative leader proteins Lab and Lb (Sangar et al., 1987) but it is not known whether these two proteins have separate functions. By using antisera raised to a synthetic peptide we have been able to show that the ratio of Lab : Lb is the same at 1 to 2 h and 2 to 3 h p.i. Thus it appears unlikely that these proteins are made in different amounts during the course of an infection.

In addition to Lab and Lb we have now detected another species of leader protein, Lb', which is produced during prolonged in vitro translation or during virus replication in BHK cells. The amount of Lb' relative to Lb increases late in infection. Tryptic peptide maps and immunoprecipitation with specific antiserum showed that the two proteins are closely related. We therefore investigated the possibility that Lb' is derived from Lb by chemical modification, by translating in the presence of a number of potential precursors of modification. All these experiments were negative including labelling with acetyl-coenzyme A, although it has previously been suggested that Lb is blocked by an acetyl group (Robertson et al., 1985).
We were surprised to find that Lb could be converted into a protein with the characteristics of Lb' by treatment with carboxypeptidase B. This enzyme is specific for C-terminal basic amino acids (Wintersberger et al., 1965) and could therefore remove the terminal lysine residue found at the C terminus of Lb (Chow et al., 1987). Thus, despite migrating more slowly than Lb in 10% polyacrylamide gels, Lb' has a lower M_r. This kind of anomalous migration of proteins in polyacrylamide gels has been described previously (Curran & Kolakofsky, 1987). It is of interest that the electrophoretic mobility of Lab is not affected by carboxypeptidase B despite presumably having a C terminus identical to that of Lb. We do not know, however, whether the C terminus of Lab is resistant to proteolysis or whether cleavage of amino acids from the C terminus occurs but does not result in aberrant migration in gels.

Although carboxypeptidase B can mimic the natural modification of Lb it does not appear to be the enzyme responsible for the cleavage in rabbit reticulocyte lysates since this 'natural' modification cannot be inhibited by 1,10-phenanthroline. We speculate that the cleavage is mediated by the leader protein itself. Although the evidence is circumstantial, this suggestion is supported by the findings that the modification in vivo is a late event and therefore unlikely to be host cell-coded, and that Lb' is produced efficiently from transcripts prepared from pTC6, which produces almost exclusively Lab and Lb, thus making it unlikely that other virus proteins
Modification of FMDV leader protein

are involved. However dilution experiments indicate that if the leader protein is the protease then the reaction is not intramolecular. The results presented here were obtained with virus of serotype A, but Western blots using peptide antiserum have indicated that a similar modification of Lb occurs with viruses of serotypes O and SAT2 (R. P. Clark & D. V. Sangar, unpublished data).

The function of the leader protein is not clear although it has been demonstrated that it is a protease that cleaves itself from the remainder of the polyprotein (Strebel & Beck, 1986). This current work suggests that the leader protein may also possess an exopeptidase activity. Whether the trimming of Lb resulting from this activity has biological significance is at present not known.

We thank Dr F. Brown for critically reading the manuscript and for useful suggestions, Mr A. Syred for peptide synthesis, Mr P. Barnett and Mr G. Fox for valuable assistance, and Ms L. Joyce for typing the manuscript.

REFERENCES

(Received 29 January 1988)