Citrobacter portucalensis sp. nov., isolated from an aquatic sample

Teresa Gonçalves Ribeiro,† Bruno Ribeiro Gonçalves,‡ Mickael Santos da Silva, Angel Novais, Elisabete Machado, João André Carriço and Luísa Peixe*†

Abstract

A Gram-stain-negative strain, A60T, isolated from a water well sample in Portugal, was characterized phenotypically, genotypically and phylogenetically. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain A60T belonged to the genus Citrobacter, and recN gene phylogeny revealed one strongly supported clade encompassing strain A60T and 13 other strains from public databases, distinct from currently recognized species of the genus Citrobacter. Furthermore, multilocus sequence analysis (MLSA) based on concatenated partial fusA, leuS, pyrG and rpoB sequences confirmed the classification obtained with the recN sequence. In silico genomic comparisons, including average nucleotide identity (ANI) and the genome-to-genome distance calculator (GGDC), showed 94.6 % and 58.4 % identity to the closest relative Citrobacter freundii ATCC 8090T, respectively. The ability to metabolize different compounds further discriminated strain A60T from other species of the genus Citrobacter. The G+C content of strain A60T is 52.0 %. The results obtained support the description of a novel species within the genus Citrobacter, for which the name Citrobacter portucalensis sp. nov. is proposed, with the type strain A60T (=DSM 104542T=ECT 9236†).

The genus Citrobacter comprises 13 species recognized by International Committee on Systematics of Prokaryotes, including two species recently described: Citrobacter pasteurii and Citrobacter europaeus [1, 2]. Members of this genus are part of the normal intestinal flora of humans and animals, and can be isolated from a variety of environmental sources, although they also constitute important agents of opportunistic infections in humans [2, 3]. Moreover, some species of the genus Citrobacter have chromosomal antibiotic resistance genes (qnrB and blacMY-2) which can be mobilized to mobile genetic elements [4, 5], (http://aridb.ccb.umd.edu/) and/or have biotechnological potential [6, 7]. Nevertheless, differentiation of species of the genus Citrobacter based on conventional tests has been problematic, preventing the recognition of species with greater medical or industrial significance [8, 9]. We had previously demonstrated that phylogenetic analyses based on recN (DNA repair protein) gene sequences provide an accurate discrimination among species of the genus Citrobacter, and furthermore unveiled isolates not affiliated to any previously recognized species [2, 4]. This was the case of strain A60T, isolated from a water well sample collected in Portugal [2, 4]. The purpose of this work was to define the taxonomic position of this strain.

Strain A60T was isolated from a water well sample collected in Cantanhede city, Centre region of Portugal (2008). The water well sample (100 ml) was processed by a vacuum membrane filtration procedure. Individual filters were pre-enriched in Brain Heart Infusion (37 °C/48 h), and the resulting enrichment (0.1 ml) was seeded in MacConkey (MAC) agar plates (37 °C/24 h). Closely related Citrobacter freundii, Citrobacter braakii ATCC 51113T and C. europaeus 97/79T were used for comparative phenotypic analysis. Strains were maintained on tryptic soy agar (TSA; Sigma-Aldrich) for short-term storage and in tryptic soy broth (TSB; Sigma-Aldrich) supplemented with 20 % (v/v) glycerol at −80 °C for long-term storage. Gram staining was carried out through the use of the Gram Staining kit (bioMérieux). Oxidase activity was tested by using 1 % (w/v) tetramethyl-p-phenylenediamine (Merck) and catalase activity was

Author affiliations: 1UCIBIO-REQUIMTE, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Portugal; 2Universidade de Lisboa, Faculdade de Medicina, Instituto de Microbiologia and Instituto de Medicina Molecular, Lisboa, Portugal; 3FP-ENAS/CEBIMED, Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, Porto, Portugal.
*Correspondence: Luísa Peixe, lpeixe@ff.up.pt
Keywords: MLSA; recN; ANI; 16S rRNA; Citrobacter freundii; GGDC.
Abbreviations: ANI, average nucleotide identity; GGDC, genome-to-genome distance calculator; MLSA, multilocus sequence analysis.
†These authors contributed equally to this work.
The GenBank/EMBL/DDBJ project and sample accession numbers for the annotated genomic sequences and sequence reads of strain A60T are PRJNA369027 and SAMN0621475B, respectively.
One supplementary table and one supplementary figure are available with the online Supplementary Material.
Fig. 1. Neighbour-joining tree based on recN gene sequences showing the relationships between strain A60T and type strains of other species of the genus Citrobacter. Genetic distances were constructed using Kimura’s 2-parameter method. Bootstrap values obtained after 1000 replicates are given at the nodes, and only values >90\% are shown. Type strains of species of the genus Citrobacter are shown in bold and underlined, and the corresponding GenBank/Patric accession numbers are the following: JMTA01000005 (C. freundii ATCC 8090T), KF057886 (C. braakii CIP 104554T), KF998020 (C. portucalensis A60T), BBMW01000018 (C. werkmanii NBRC 105721T), FLYB01000007 (C. europaeus 97/79T), CDHL01000055 (C. pasteurii CIP 55.13T), KF057888 (C. youngae CIP 105016T), KF057887 (C. freundii).
evaluated in the presence of 3 % (v/v) aqueous hydrogen peroxide solution. Growth at different NaCl concentrations [0, 3.0, 6.0, 9.0, 12.0 and 15.0 % (w/v)] and temperatures (5, 10, 15, 20, 25, 30, 37, 50, 65 and 70 °C) were examined by using TSB as the basal medium. To determine the pH range for growth, basal medium was adjusted with HCl or NaOH to reach pH values of 4.0–11.0, at intervals of 1.0 pH unit. To confirm the ability of anaerobic growth, strains were inoculated into TSB tubes with paraffin on top. Biochemical characterization was performed using the standardized API 20E strips (incubation at 37 °C for 24 h) and API 50 CH strips (incubation at 37 °C for 48 h) (bioMérieux). Whole genome shotgun sequencing of strain A60T was achieved using Illumina MiSeq 2×250 nt. The draft genome of strain A60T was obtained using INNUca-NUENDO Reads Control and Assembly (https://github.com/INNUENDOCON/INNUca), which provides a pipeline to check for read quality using FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/), followed by de novo assembly with SPAdes [10]. Annotation of the draft genome was performed using Prokka software [11]. In silico genome-to-genome comparison was assessed by using nucleotide identity (ANI) calculated by using both in-house scripts (https://github.com/bfrgoncalves/ANI_Calculator) and jSpecies [12], and by using the genome-to-genome distance calculator (GGDC 2.0) under the recommended Formula 2 (http://ggdc.dsmz.de/distcalc2.php) [13]. Partial nucleotide sequences of the housekeeping genes recN, rrs (16S ribosomal RNA), rpoB (RNA polymerase beta subunit), pyrG (CTP synthetase), fusA (elongation factor-G), and leuS (tRNA synthetase), with the latter four included in the multilocus sequence analysis (MLSA) scheme described by Clermont et al. [1], were aligned and the similarity scores were generated using MEGA software version 5.2.2 (http://www.megasoftware.net/) [14]. Phylogenetic trees were reconstructed using the neighbour-joining method [15]. In addition, genetic distances were estimated using Kimura’s 2-parameter model [16]. The reliability of internal branches was assessed from bootstrapping based on 1000 resamplings [17].

16S rRNA gene sequence variation provides limited resolution to discriminate among closely related species of the genus *Citrobacter* [1, 2]. Indeed, phylogenetic analysis based on 16S rRNA gene sequences showed that strain A60T falls in the previously recognized group I described by Warren et al. [18], along with type strains of *C. freundii*, *Citrobacter youngae*, *C. braakii*, *Citrobacterwerkmanii*, *Citrobacter gillenii*, *Citrobacter muriniaceae*, *C. pasteuri* and *C. europaeus* (98.9% to 99.9% identity) (Fig. S1, available in the online Supplementary Material). The phylogenetic analysis based on recN showed that A60T and other strains for which recN sequences are currently available in public databases were grouped together and shared high similarity (99.1%), which was statistically supported by a bootstrap value greater than 95% (Fig. 1, Table S1). Furthermore, Fig. 1 clearly delineates strain A60T and closely related strains in a separate clade, which was 93.1% similar to *C. freundii*. Similar results were observed with the application of the MLSA scheme (fusA, leuS, pyrG and rpoB; 2082 nt), with strain A60T and eight strains with publicly available genome sequences representing a well-separated lineage supported by a bootstrap value of 100% (data not shown). Additionally, affiliation of intrinsic genes (qnrB and bla_{CMY-2-like}) shows allele variation specific to each species of the genus *Citrobacter* (e.g. qnrB cluster I associated with *Citrobacter* sp. I, which included A60T) [4] (data not shown), corroborating the definition of *Citrobacter portucalensis* as a novel species.

The ANI values of strain A60T compared with the type strains of *C. braakii* (92.6%), *C. europaeus* (93.1%) and even *C. freundii* (94.6%) were below the species cut-off level of 95%. ANI values close to the proposed threshold for species delineation were also observed for two other closely related species (*C. pasteuri*) CIP 55.13T and *C. youngae* CIP 105016T; ANI=94.7% [1]. In addition, the intergenomic distance between strain A60T and the closest relative type strain of *C. freundii* presented a GGDC value of 58.4%, which is clearly below the proposed criterion for bacterial species (70%) and subspecies (79%) delineation [19], further supporting that at the whole genome level, strain A60T represents a novel species.

The novel isolate stained as Gram-negative. The rod-shaped cells (1–2 µm in diameter and 4–5 µm in length) were motile. Growth occurred at 20, 25, 30, 37 and 50 °C, and in the range of 0–15% (w/v) NaCl and pH 5.0–10.0. Strain A60T demonstrated differential biochemical profiles compared to type strains of closely related species of the genus *Citrobacter*, which are summarized in Table 1.

Overall, phylogenetic analysis of different genotypic markers, genome comparisons, and the phenotypic behaviour strongly suggests that strain A60T represents a novel species within the genus *Citrobacter*, for which the name *Citrobacter portucalensis* sp. nov. is proposed.

DESCRIPTION OF CITROBACTER PORTUCALENSIS SP. NOV.

Citrobacter portucalensis (por.tu.cal.en’sis. N.L. masc. adj. *portucalensis* referring to Portugal, from where the bacterium was isolated).

Colonies are translucent and bright, and cells are Gram-stain-negative, rod-shaped (1–2 µm in diameter, 4–5 µm in
length), motile and non-spore-forming. Facultatively anaerobic. Catalase- and oxidase-negative. Does not decompose gelatin. Voges-Proskauer test and indole production test are negative. The methyl red test is positive. Growth occurs in the range of 0–15% (w/v) NaCl and at pH 5.0–10.0 in TSB. Produces H₂S and reduces nitrate to nitrite, but N₂ production is negative. Uses citrate as a carbon source. L-Arginine, L-lysine and L-tryptophan are not utilized. Urease activity is positive. Acid is produced from glyceral, L-arabinose, D-ribose, D-xyllose, D-galactose, D-glucose, D-fructose, D-mannose, L-sorbose, L-rhamnose, inositol, D-mannitol, D-sorbitol, N-acetylglucosamine, arbutin, salicin, cellubiose, maltose, lactose, melibiose, sucrose, trehalose, raffinose, gentiobiose, L-fucose, potassium gluconate, 2-ketogluconate and 5-ketogluconate, but not from erythritol, D-arabinose, L-xyllose, D-adonitol, methyl β-D-xylopyranoside, dulcitol, methyl α-D-mannopyranoside, methyl α-D-glucopyranoside, amygdalin, aesculin ferric citrate, inulin, melizetidine, starch, glycogen, xylitol, turanose, D-lyxose, D-tagatose, D-fucose, D-arabitol and L-arabitol.

The type strain is A60ᵀ (=DSM 104542ᵀ=CECT 9236ᵀ), isolated from a water well in Portugal. The DNA G+C content of the type strain is 52.0%. Strains of C. portucalensis have been isolated from aquatic samples (water well, fountain, borehole), feed, catheter tip and human urine in different countries, some cases associated with human disease (Table S1).

Funding information
This work received financial support from the European Union (FEDER funds POCS/01/0145/FEDER/007728, LISBOA-01-0145-FEDER/016417) and from National Funds [Fundação para a Ciência e e Tecnologia (FCT) and Ministério da Educação e Ciência] under the Partnership Agreement PT2020 UID/Multi/04378/2013 and from project BacGenTrack TUBI-TAK/0004/2014 [FCT/ Scientific and Technological Research Council of Turkey (Türkiye Bilimsel ve Teknolojik Araştirma Kurumu, TÜBİTAK)].

Conflicts of interest
The authors declare that there are no conflicts of interest.

References

Five reasons to publish your next article with a Microbiology Society journal

1. The Microbiology Society is a not-for-profit organization.
2. We offer fast and rigorous peer review – average time to first decision is 4–6 weeks.
3. Our journals have a global readership with subscriptions held in research institutions around the world.
4. 80% of our authors rate our submission process as ‘excellent’ or ‘very good’.
5. Your article will be published on an interactive journal platform with advanced metrics.

Find out more and submit your article at microbiologyresearch.org.