Anaeromicrobium sediminis gen. nov., sp. nov., a fermentative bacterium isolated from deep-sea sediment

Xiaobo Zhang,1,2,3† Xiang Zeng,1,2,3† Xi Li,1,2,3 Karine Alain,4,5,6 Mohamed Jebbar4,5,6 and Zongze Shao1,2,3,*

Abstract

A novel anaerobic, mesophilic, heterotrophic bacterium, designated strain DY2726D{T}, was isolated from West Pacific Ocean sediments. Cells were long rods (0.5–0.8 µm wide, 4–15 µm long), Gram-positive and motile by means of flagella. The temperature and pH ranges for growth were 25–40°C and pH 6.5–9.0, while optimal growth occurred at 37°C and pH 7.5, with a generation time of 76 min. The strain required sea salts for growth at concentrations from 10 to 30 g l⁻¹ (optimum at 20 g l⁻¹). Substrates used as carbon sources were yeast extract, tryptone, glucose, cellobiose, starch, gelatin, dextrin, fructose, fucose, galactose, galacturonic acid, gentiobiose, glucosaminic acid, mannose, melibiose, palatinose and rhamnose. Products of fermentation were carbon dioxide, acetic acid and butyric acid. Strain DY2726D{T} was able to reduce amorphous iron hydroxide, goethite, amorphous iron oxides, anthraquinone-2,6-disulfonate and crotonate, but did not reduce sulfur, sulfate, thiosulfate, sulfate or nitrate. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain DY2726D{T} was affiliated to the family Clostridiaceae and was most closely related to the type strains of Alkaliphilus transvaalensis (90.0% similarity) and Alkaliphilus oremlandii (89.6%). The genomic DNA G+C content was 33.4 mol%. The major cellular fatty acids of strain DY2726D{T} were C₁₆:₁, C₁₄:₀ and C₁₆:₀. On the basis of its phenotypic and genotypic properties, strain DY2726D{T} is suggested to represent a novel species of a new genus in the family Clostridiaceae, for which the name Anaeromicrobium sediminis gen. nov., sp. nov. is proposed. The type strain of Anaeromicrobium sediminis is DY2726D{T} (=JCM 30224{T}=MCCC 1A00776{T}).

The deep-sea environment represents the largest continuous ecosystem on our planet. Studies of microbial diversity based on cultivation-dependent methods conducted on deep-sea sediments sample have suggested that Gammaproteobacteria, Firmicutes and Actinobacteria are the most frequently identified groups [1–4]. Anaerobic bacteria in such sediments can rapidly hydrolyse organic matter [5].

The family Clostridiaceae was the first of the 19 families within the order Clostridiales to be described [6], and it contains a large proportion of anaerobic fermentative microorganisms, including the genera Clostridium, Alkaliphilus and other related genera [7, 8]. Some species of this family have been frequently isolated from marine anaerobic environments, including Clostridium bryantii from sea sediments [9], Clostridium lortetii from Dead Sea sediments [10], Clostridium oceanicum from marine sediments collected off the Atlantic and Pacific coasts of tropical South America [11], Clostridium halophilum DSM 5387{T} from marine hypersaline sediments [12], Calonanaerobacter azorensis MV1087{T} from hydrothermal sulfide samples [13], Caminicella sporogenes AM1114{T} and Clostridium caminithermaleDVird3{T} from deep-sea hydrothermal vent chimney sample [8, 14] and Wukongibacter baidiensis DY30321{T} from a sample of mixed hydrothermal sulfides [15]. In this study, an anaerobic fermentative bacterial strain from deep-sea sediment sample was enriched and isolated. Strain DY2726D{T} is proposed as a representative of a novel species of the new genus Anaeromicrobium within the family Clostridiaceae.

Strain DY2726D{T} was isolated from a deep-sea sediment sample collected at a depth of 5445 m in the west Pacific Ocean

Author affiliations: 1Key Laboratory of Marine Biogenic Resources, the Third Institute of Oceanography SOA, Xiamen, Fujian 361005, PR China; 2Collaborative Innovation Center of Deep Sea Biology, Xiamen, Fujian 361005, PR China; 3Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen, Fujian 361005, PR China; 4CNRS, UMR – UMR 6197, Laboratoire de Microbiologie des Environments Extrêmes (LM2E), Place Nicolas Copernic, F-29280 Plouzané, France; 5Université de Bretagne Occidentale (UBO, UE), Institut Universitaire Européen de la Mer (IUEM) – UMR 6197, Laboratoire de Microbiologie des Environments Extrêmes (LM2E), Place Nicolas Copernic, F-29280 Plouzané, France; 6Ifremer, UMR6197, Laboratoire de Microbiologie des Environments Extrêmes (LM2E), Technopôle Pointe du diable, F-29280 Plouzané, France.

*Correspondence: Zongze Shao, shaozz@163.com

Keywords: Anaeromicrobium sediminis; deep sea sediment.

Abbreviation: AQDS, anthraquinone-2,6-disulfonate.

†These authors contributed equally to this work.

The GenBank/EMBL/DDJB accession number for the 16S rRNA gene sequence of strain DY2726D is KJ137882. One supplementary figure is available with the online Supplementary Material.
Morphological characteristics of the cells were determined by light microscopy (CX21; Olympus) and transmission electron microscopy (JEM-1230; JEOL). Cells of strain DY2726D^T were regular long rods (0.5–0.8 µm in width, 4–15 µm in length), motile by means of flagella (Fig. S1a, available in the online Supplementary Material). Cells appeared mainly singly. Spores were never observed, even in the late stationary phase of growth or after heat stimulation (80 °C, 10 min). Cells stained Gram-negative using the Gram stain kit (Beijing Solarbio Microorganism Reagent Co.; Guangdong Huankai microbiol Sci and Tech Co.) with control strains under aerobic and anaerobic conditions. Although the KOH reaction was negative, cells were identified as Gram-positive type [17]. Transmission electron micrographs of thin sections showed that cells of strain DY2726D^T had a thin peptidoglycan cell wall (Fig. S1b). However, the whole genome sequence showed that strain DY2726D^T lacked some characteristics of Gram-negative bacteria, such as the lipid A biosynthesis pathway and Type I, II, III, IV and V secretion systems. We identified strain DY2726D^T as a Gram-positive bacteria. The Gram stain reaction may have incorrectly grouped some strains of clostridia, eubacteria and bifidobacteria as staining Gram-negative or Gram-variable [18]. For these species, additional methods and genome analysis are necessary to make an identification.

Physiological characterization of the novel isolate was carried out in FRPFO medium dispensed anaerobically in 50 ml vials sealed with butyl-rubber stoppers, and reduced with 0.05 % (w/v) sterile cysteine-HCl solution just before inoculation. Unless otherwise stated, methods were carried out anaerobically under an atmosphere of N₂ (100 %, 1 bar), and incubation was performed in the dark at 37 °C and pH 7.0. Growth was routinely monitored by direct cell counting using a modified Thoma chamber (depth 10 µm). Growth rates were calculated using linear regression analysis of eight points along the linear portions of the growth curves and logarithmically transformed [14]. Determination of the temperature range for growth was tested over the range 4–50 °C (4, 15, 20, 25, 28, 30, 35, 37, 40, 45 and 50 °C). Growth was observed from 25 to 40 °C, with maximum growth rate at 35–37 °C. The pH range for growth was tested from an initial pH 4.0 to pH 10.0, at 37 °C, in basal medium buffered and adjusted to the required pH (initial pH at 20 °C) with MES (pH 4.0–6.0), PIPES (pH 7.0–8.0), HEPES (pH 8.0–9.0) or AMPSO (pH 8.0–9.0), and Gly-NaOH (pH 9.0–10.0). Growth was observed from pH 6.5 to 9.0 and the optimum pH for growth was 7.5. Salt tolerance was tested at 37 °C in FRPFO medium prepared with various concentrations of NaCl (0–100 g l^{−1}, 5 g l^{−1} intervals) and various concentrations of sea salts (Sigma; 0–100 g l^{−1}, 5 g l^{−1} intervals). Strain DY2726D^T required sea salts and grew at concentrations ranging from 10 to 30 g l^{−1}, with an optimum at 20 g l^{−1}. Under optimal growth conditions, the shortest generation time was 76 min. Compared with its closest relatives, the temperature range for growth of strain DY2726D^T was similar to those for the genus *Alkaliphilus*, but its pH range for growth was neutral (Table 1).

Strain DY2726D^T was a chemo-organoheterotrophic bacterium, utilizing complex organic compounds including peptone, tryptone and yeast extract. The ability of the isolate to use single carbon sources for growth was tested in triplicate in Hungate culture tubes and Biolog AN microplates in anaerobic jars under optimal growth conditions. The following substrates were utilized for growth of strain DY2726D^T: starch, gelatin, cellobiose, dextrin, D-fructose, L-fucose, D-galactose, D-galacturonic acid, D-glucosaminic acid, gentiobiose, D-glucose, D-glucose 6-phosphate, D-mannose, melibiose, 3-methyl D-glucose, palatinose, L-rhamnose, α-ketobutyric acid and α-ketovaleric acid. However, lactate, malate, malose, sucrose, tartrate, trehalose, acetic acid, formic acid, fumaric acid, glyoxylic acid, malic acid, succinic acid and alanimamide were not utilized. The strain was unable to grow on amino acid pairs (alanine and glycine; alanine and proline) via the Stickland reaction [19]. The major fermentation products of glucose, determined by GC (QP2010; Shimadzu), were carbon dioxide, acetic acid and butyric acid.

The ability of the novel isolate to use electron acceptors was tested by adding elemental sulfur (12 g l^{−1}), sulfate (20 mM), sulfitre (1 mM), thiosulfate (20 mM), nitrate (10 mM), anthraquinone-2,6-disulfonate (AQDS, 2 mM), Fe(III) oxihydroxide (pH 7.0, 50 mM), amorphous iron(III) oxide (pH 9.0, 50 mM), goethite (α-FeOOH, pH 12.0, 50 mM), Fe(III) citrate (20 mM), Fe(III) chloride (20 mM), EDTA-Fe(III) (20 mM), fumarate (10 mM), crotonate (10 mM) or oxygen (0.05–0.5 %, v/v) to the medium. The respiratory activity was determined by measuring the turbidity of the cultures and the formation of reduced products of the electron acceptors (sulfide and ferrous iron) [20, 21]. The micro-organism’s ability to reduce nitrate was determined by the phenol disulfonic acid method [22]. The disappearance of crotonate and its products was measured by HPLC [23]. When AQDS becomes reduced, the colour of AQDS changes from clear to orange [24]. Strain DY2726D^T was found to be strictly anaerobic. It could grow only by fermentation, and facultatively reduced AQDS, crotonate and insoluble forms of Fe(III), including Fe(III) oxihydroxide.
Table 1. Characteristics between strain DY2726T and its phylogenetically closest relatives

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell size (µm)</td>
<td>0.5–0.8×10–15.0</td>
<td>0.4–0.7×3.0–6.0</td>
<td>0.8–1.0×2.5–7.0</td>
<td>0.4–0.5×5.0–9.0</td>
<td>0.5–0.7×3.0–10.0</td>
</tr>
<tr>
<td>Temperature (°C)</td>
<td>20–40 (37)</td>
<td>20–50 (40)</td>
<td>18–49 (41)</td>
<td>25–58 (45)</td>
<td>45–65 (55–65)</td>
</tr>
<tr>
<td>NaCl (g l−1) (optimum)</td>
<td>10–30 (20)</td>
<td>0–33 (5)</td>
<td>20–130 (80)</td>
<td>15–60 (30)</td>
<td>20–60 (25–30)</td>
</tr>
<tr>
<td>pH (optimum)</td>
<td>6.5–9.0 (7.5)</td>
<td>8.5–12.5 (10)</td>
<td>6.0–8.0 (7.4)</td>
<td>5.8–8.2 (6.6)</td>
<td>4.5–8.0 (7.5–8.0)</td>
</tr>
<tr>
<td>16S rRNA gene sequence similarity (%) to</td>
<td>100</td>
<td>90.0</td>
<td>89.2</td>
<td>88.3</td>
<td>87.9</td>
</tr>
<tr>
<td>Substrate utilization</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cellulose</td>
<td>+</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Fructose</td>
<td>+</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Galactose</td>
<td>+</td>
<td>−</td>
<td>ND</td>
<td>+</td>
<td>W</td>
</tr>
<tr>
<td>Products of glucose fermentation</td>
<td>CO₂, acetic acid, butyric acid</td>
<td>ND</td>
<td>Ethanol, lactate</td>
<td>Propionate</td>
<td>Acetate, butyric acid, ethanol, H₂, CO₂</td>
</tr>
<tr>
<td>Electron acceptors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S²</td>
<td>−</td>
<td>+</td>
<td>ND</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>Thiosulfate</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>Stickland reaction</td>
<td>−</td>
<td>ND</td>
<td>+</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>DNA G+C content (mol%)</td>
<td>33.4</td>
<td>36.4</td>
<td>26.9</td>
<td>33.1</td>
<td>23.2–25.2</td>
</tr>
</tbody>
</table>

(pH 7.0), amorphous iron(III) oxide (pH 9.0) and goethite (α-FeOOH; pH 12.0). The novel isolate was unable to reduce soluble forms of Fe(III) such as Fe(III) citrate, Fe(III) chlorite and EDTA-Fe(III). Sulfur compounds such as elemental sulfur (S⁰), sulfate, sulfite, thiosulfate and nitrate were not utilized as electron acceptors (Table 1).

Determination of the whole-cell fatty acid composition was performed on cultures grown at 37°C on YTG medium (1 g yeast extract, 1 g peptone, 2.5 g glucose, 30 g artificial sea salts, 6.05 g PIPES, 0.5 ml Wolf's vitamin solution (per litre distilled water: biotin 2 mg, folic acid 2 mg, pyridoxine-HCl 10 mg, thiamine-HCl2H₂O 5 mg, riboflavin 5 mg, nicotinic acid 5 mg, D-Ca-pantothenate 5 mg, vitamin B12 0.10 mg, p-aminobenzoic acid 5 mg, lipoic acid 5 mg), 5 ml trace elements solution [25], 0.5 g cystein-HCl, 1 mg resazurin). Cells were harvested at the end of the exponential growth phase (36 h of incubation). Fatty acids were extracted and analysed following the instructions of the Microbial Identification System operating manual [26]. The predominant fatty acids in strain DY2726T comprised C₁₆:₁ (42.0%), C₁₄:₀ (31.9%) and C₁₆:₀ (12.8%), significantly different from those of the closest related strain, Alkaliphilus transvaalensis SAGM1T (51.6% iso-C₁₅:₀ 12.2% iso-C₁₇:₀ 9.2% iso-C₁₅:₁ω7c, 7.2% iso-C₁₇:₁ω7c) [7]. The quinones of strain DY2726T were extracted with the method described by Minnikin et al. [27]. No respiratory quinones were detected.

The G+C content of the genomic DNA of strain DY2726T was determined by HPLC, as described by Mesbah et al. [28]. The G+C content of strain DY2726T was 33.4 mol%. An almost-complete 16S rRNA gene sequence (1431 nt) was determined, using five primer pairs, and deposited in the NCBI database (accession no. KJ137882). The identification of phylogenetic neighbours was initially carried out using BLAST [29] and MEGA BLAST [30] against the database of type strains with validly published prokaryotic names [31]. A search of most similar 16S rRNA gene sequences was also performed with the web-based EzTaxon-e server [32, 33]. Alignment of all sequences was performed using the software CLUSTAL X (Version 2.3) [34] and phylogenetic trees were reconstructed using the neighbour-joining method with the software MEGA (Version 5.1) [35]. Bootstrap analysis was performed with 1000 replications to provide confidence estimates for tree topologies. The 16S rRNA gene sequence revealed that strain DY2726T was closely related to species in the family Clostridiaceae in the class Clostridia, with similarity values below 91.0%. The most closely related strain was Alkaliphilus transvaalensis SAGM1T, with 90.0% 16S rRNA gene sequence similarity, followed by Alkaliphilus oremlandii OhI1AsT (89.6%), Anaerosolobacter carbonophilus IRF19T (89.6%), Geosporobacter ferrireducens IRF9T (89.5%) and Clostridium halophilum DSM 5387T (89.4%).
A phylogenetic tree of representative members in the class *Clostridia* was reconstructed from 16S rRNA gene sequences using 1301 homologous gene sequence positions (Fig. 1). In Fig. 1, compared with the *Alkaliphilus* lineage, strain DY2726D^T and related species (including *Clostridium halophilum* DSM 5387^T, *Clostridium caminithermale* DVird3^T and *Caminicella sporogenes* AM1114^T) were distributed in a separate lineage.

In conclusion, on the basis of the significant phylogenetic distance with its closest relatives (far below the threshold level of 94.5% for the delineation of a new genus) [36], and with clear phenotypic differences with the closest neighbours (Table 1), we propose to identify strain DY2726D^T as the type strain of a novel species within a new genus, for which the name *Anaeromicrobium sediminis* gen. nov., sp. nov. is proposed.

DESCRIPTION OF ANAEROMICROBIUM

GEN. NOV.

Anaeromicrobium (An.ae.ro.mi.cro'bi.um. Gr. pref. an not; Gr. n. aer, aeros air; N.L. neut. n. microbium microbe; N. L. neut. n. *Anaeromicrobium* an anaerobic microbe).

Cells are long rods; endospores are not observed; mesophilic, strictly anaerobic, chemo-organoheterotrophic and fermentative. The principal fatty acids are C_{16:1}, C_{14:0} and C_{16:0}. No respiratory quinones are detected. The DNA G+C content is approximately 33 mol%. 16S rRNA gene sequence comparisons place the genus in the domain *Bacteria*, within the class *Clostridia*, family *Clostridiaceae*.

DESCRIPTION OF ANAEROMICROBIUM SEDIMINIS SP. NOV.

Anaeromicrobium sediminis (se.di.mi’nis. L. gen. n. sedimi-nis of a sediment).

Cells are motile, long rods (0.5–0.8 µm in width, 4–15 µm in length). Gram-stain-negative but give a negative KOH test indicating a Gram-positive cell type. Cells grow in the temperature range 25–40°C (optimum 37°C), pH range 6.5–9.0 (optimum pH 7.5) and with sea salts concentrations of 10–30 g l⁻¹ (optimum 20 g l⁻¹). The shortest doubling time is 76 min under optimal growth conditions. It can utilize complex organic compounds, amino acids, sugars and organic acids including peptone, tryptone, yeast extract, cellobiose,
dextrin, D-fructose, L-fucose, D-galactose, D-galacturonic acid, D-glucosaminic acid, gentiobiose, D-glucose, D-glucose 6-phosphate, D-mannose, melibiose, 3-methyl D-glucose, palatinose, D-thamnose, α-ketobutyric acid and α-ketovaleric acid. Insoluble Fe(III) compounds, including amorphous Fe(III) oxyhydroxide (pH 7.0), amorphous iron (III) oxide (pH 9.0) and goethite (α-FeOOH, pH 12.0), can be reduced to Fe(II) while sulfur, sulfate, thiosulfate and nitrate cannot be reduced.

The type strain, DY2726D\(^T\) (=JCM 30224\(^T\)=MCCC 1A00776\(^T\)), was isolated from sediments of the West Pacific Ocean (154.1° E 16.0° N) at a depth of 5445 m. The DNA G+C content of the type strain is 33.4 mol%.

Funding information
This work was supported by the National Program on Key Basic Research Project (973 Program, No. 2011CB417304), COMRA program (No. DY125–15-R-01), the fund of National Microfand of Microbial Resources (No. NIRM2014–9), the EU FP7 program MaCuMBA (Grant agreement no. 311975), the PICCS-CNRS-INEE Phypress and the PHC Cai YuanPei 30.412WG funded by the French Ministries of Foreign Affairs and International Development (MAEDI) and the Department of Education, Higher education and Research (MENESR), and by the Chinese Ministry of Education.

Acknowledgements
We are very grateful to the R/V Hai Yang Liu Hao operation teams of cruise DY125–27 and Mr Yanwu Chen for helping us to collect and enrich the samples on board.

Conflicts of interest
The authors declare that there are no conflicts of interest.

Reference

Five reasons to publish your next article with a Microbiology Society journal

1. The Microbiology Society is a not-for-profit organization.
2. We offer fast and rigorous peer review – average time to first decision is 4–6 weeks.
3. Our journals have a global readership with subscriptions held in research institutions around the world.
4. 80% of our authors rate our submission process as ‘excellent’ or ‘very good’.
5. Your article will be published on an interactive journal platform with advanced metrics.

Find out more and submit your article at microbiologyresearch.org.