1887

Abstract

A Gram-staining-negative and strictly aerobic bacterium, designated strain S2-A1, was isolated from estuary sediment in South Korea. Cells of strain S2-A1 were oxidase- and catalase-positive rods without a gliding motility. Growth was observed at 15–40 °C (optimum, 37 °C), at pH 6.0–10.0 (optimum, pH 7.0–7.5) and in the presence of 0–4.0 % (w/v) NaCl (optimum, 0.5–1.0 %). The sole respiratory quinone was MK-7. iso-C, summed feature 3 (comprising Cω7/C ω6) and summed feature 9 (comprising iso-Cω9/C 10-methyl) were found as the major fatty acids (>5 % of the total fatty acids). The polar lipids of strain S2-A1 consisted of phosphatidylethanolamine, an unidentified aminophospholipid, three unidentified aminolipids and five unidentified lipids. The G+C content of the genomic DNA was 45.6 mol%. Strain S2-A1 was most closely related to HMC4223 with a 97.7 % 16S rRNA gene sequence similarity. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain S2-A1 formed a tight phyletic lineage with members of the genus . On the basis of phenotypic, chemotaxonomic and molecular features, strain S2-A1 clearly represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is S2-A1 (=KACC 18987=JCM 31546).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001711
2017-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/4/914.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001711&mimeType=html&fmt=ahah

References

  1. Bowman JP, Nichols CM, Gibson JA. Algoriphagus ratkowskyi gen. nov., sp. nov., Brumimicrobium glaciale gen. nov., sp. nov., Cryomorpha ignava gen. nov., sp. nov. and Crocinitomix catalasitica gen. nov., sp. nov., novel flavobacteria isolated from various polar habitats. Int J Syst Evol Microbiol 2003; 53:1343–1355 [View Article][PubMed]
    [Google Scholar]
  2. Park S, Kim S, Jung YT, Yoon JH. Algoriphagus confluentis sp. nov., isolated from the junction between the ocean and a freshwater lake. Int J Syst Evol Microbiol 2016; 66:118–124 [View Article][PubMed]
    [Google Scholar]
  3. Kohli P, Nayyar N, Sharma A, Singh AK, Lal R. Algoriphagus roseus sp. nov., isolated from a hexachlorocyclohexane-contaminated dumpsite. Int J Syst Evol Microbiol 2016; 66:3558–3565 [View Article][PubMed]
    [Google Scholar]
  4. Jung YT, Lee JS, Yoon JH. Algoriphagus aestuarii sp. nov., a member of the Cyclobacteriaceae isolated from a tidal-flat sediment of the Yellow Sea in Korea. Int J Syst Evol Microbiol 2015; 65:3439–3446 [View Article][PubMed]
    [Google Scholar]
  5. Shahina M, Hameed A, Lin SY, Lai WA, Hsu YH et al. Description of Algoriphagus taiwanensis sp. nov., a xylanolytic bacterium isolated from surface seawater, and emended descriptions of Algoriphagus mannitolivorans, Algoriphagus olei, Algoriphagus aquatilis and Algoriphagus ratkowskyi. Antonie van Leeuwenhoek 2014; 106:1031–1040 [View Article][PubMed]
    [Google Scholar]
  6. Inan K, Kacagan M, Ozer A, Osman Belduz A, Canakci S. Algoriphagus trabzonensis sp. nov., isolated from freshwater, and emended description of Algoriphagus alkaliphilus. Int J Syst Evol Microbiol 2015; 65:2234–2240 [View Article][PubMed]
    [Google Scholar]
  7. Nedashkovskaya OI, Kim SB, Kwon KK, Shin DS, Luo X et al. Proposal of Algoriphagus vanfongensis sp. nov., transfer of members of the genera Hongiella Yi and Chun 2004 emend. Nedashkovskaya et al. 2004 and Chimaereicella Tiago et al. 2006 to the genus Algoriphagus, and emended description of the genus Algoriphagus Bowman et al. 2003 emend. Nedashkovskaya et al. 2004. Int J Syst Evol Microbiol 2007; 57:1988–1994 [View Article][PubMed]
    [Google Scholar]
  8. Copa-Patiño JL, Arenas M, Soliveri J, Sánchez-Porro C, Ventosa A. Algoriphagus hitonicola sp. nov., isolated from an athalassohaline lagoon. Int J Syst Evol Microbiol 2008; 58:424–428 [View Article][PubMed]
    [Google Scholar]
  9. Liu Y, Li H, Jiang JT, Liu YH, Song XF et al. Algoriphagus aquatilis sp. nov., isolated from a freshwater lake. Int J Syst Evol Microbiol 2009; 59:1759–1763 [View Article][PubMed]
    [Google Scholar]
  10. Lee DH, Kahng HY, Lee SB. Algoriphagus jejuensis sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2012; 62:409–413 [View Article][PubMed]
    [Google Scholar]
  11. Jeong SH, Jin HM, Lee HJ, Jeon CO. Altererythrobacter gangjinensis sp. nov., a marine bacterium isolated from a tidal flat. Int J Syst Evol Microbiol 2013; 63:971–976 [View Article][PubMed]
    [Google Scholar]
  12. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article][PubMed]
    [Google Scholar]
  13. Nawrocki EP, Eddy SR. Query-dependent banding (QDB) for faster RNA similarity searches. PLoS Comput Biol 2007; 3:e56 [View Article][PubMed]
    [Google Scholar]
  14. Felsenstein J. PHYLIP (phylogeny inference package), version 3.6a. Seattle, WA, USA: Seattle: Department of Genetics, University of Washington; 2002
  15. Stamatakis A, Ott M, Ludwig T. RAxML-OMP: An efficient program for phylogenetic inference on SMPs. In: Proceedings of the 8th International Conference on Parallel Computing Technologies (PaCT2005), Lecture Notes in Computer Science vol. 3506 Springer; 2005 pp. 288–302
    [Google Scholar]
  16. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44:846–849 [View Article]
    [Google Scholar]
  17. Rosselló-Móra R, Amann R. Past and future species definitions for Bacteria and Archaea. Syst Appl Microbiol 2015; 38:209–216 [View Article][PubMed]
    [Google Scholar]
  18. Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 2006; 33:152–155
    [Google Scholar]
  19. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article][PubMed]
    [Google Scholar]
  20. Gomori G. Preparation of buffers for use in enzyme studies. In Colowick SP, Kaplan NO. (editors) Methods in Enzymology vol. 1 New York: Academic press; 1955 pp. 138–146
    [Google Scholar]
  21. Bernardet JF, Nakagawa Y, Holmes B. Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070 [View Article][PubMed]
    [Google Scholar]
  22. Lányí B. Classical and rapid identification methods for medically important Bacteria. Methods Microbiol 1987; 19:1–67 [CrossRef]
    [Google Scholar]
  23. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P. (editor) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp. 607–654
    [Google Scholar]
  24. Cowan ST, Steel KJ. Manual for the Identification of Medical Bacteria, 3rd ed. Cambridge: Cambridge University Press; 1993
    [Google Scholar]
  25. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19:161–208 [CrossRef]
    [Google Scholar]
  26. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  27. Minnikin DE, Patel PV, Alshamaony L, Goodfellow M. Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 1977; 27:104–117 [View Article]
    [Google Scholar]
  28. Gonzalez JM, Saiz-Jimenez C. A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 2002; 4:770–773 [View Article][PubMed]
    [Google Scholar]
  29. Kim H, Joung Y, Joh K. Algoriphagus taeanensis sp. nov., isolated from a tidal flat, and emended description of Algoriphagus hitonicola. Int J Syst Evol Microbiol 2014; 64:21–26 [View Article][PubMed]
    [Google Scholar]
  30. Ahmed I, Yokota A, Fujiwara T. Chimaereicella boritolerans sp. nov., a boron-tolerant and alkaliphilic bacterium of the family Flavobacteriaceae isolated from soil. Int J Syst Evol Microbiol 2007; 57:986–992 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001711
Loading
/content/journal/ijsem/10.1099/ijsem.0.001711
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error