1887

Abstract

An aerobic, mildly acidophilic actinobacterium was isolated from the Ochre Beds bog in Kootenay National Park, Canada. Cells of isolate OB1 were Gram-stain-positive, non-motile, pink- to purple-pigmented filaments. The pH range for growth was pH 3.5–6.5 (optimum pH 5.5), and the temperature range was 13–30°C. The major cellular fatty acids were i-C (28.5 %), i-C (14.6 %) and ai-C (14.3 %), and the major polar lipid was phosphohexose. The major quinone was menaquinone-11 (MK-11), and the peptidoglycan type was A1γ. The DNA G+C content was 70.2 %. Along with growth on complex media including yeast extract, proteose peptone, casamino acids and tryptic soy broth, growth occured on mono- and disaccharides (glucose, sucrose, galactose and xylose) and polysaccharides (starch, gellan, pectin, xylan and alginate). Anaerobic growth was not observed. The cells did not fix atmospheric nitrogen. On the basis of comparative 16S rRNA gene sequence analysis, this isolate belonged to the family , in the suborder of the order . The most closely related species was . However, the 16S rRNA gene sequence identity to this bacterium was low (92.8 %) and there were several chemotaxonomic differences from this species. We therefore propose a novel genus and species, gen. nov., sp. nov., with strain OB1 (=DSM 45618=ATCC BAA-2771) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001667
2017-03-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/3/602.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001667&mimeType=html&fmt=ahah

References

  1. Janssen PH. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Environ Microbiol 2006; 72:1719–1728 [View Article][PubMed]
    [Google Scholar]
  2. Dedysh SN, Pankratov TA, Belova SE, Kulichevskaya IS, Liesack W. Phylogenetic analysis and in situ identification of bacteria community composition in an acidic Sphagnum peat bog. Appl Environ Microbiol 2006; 72:2110–2117 [View Article][PubMed]
    [Google Scholar]
  3. Cho S-H, Han J-H, Seong CN, Kim SB. Phylogenetic diversity of acidophilic Sporoactinobacteria isolated from various soils. J Microbiol 2006; 44:600–606[PubMed]
    [Google Scholar]
  4. Oren A. Acidophiles. In Encyclopedia of Life Sciences (ELS) Chichester: John Wiley & Sons, Ltd; 2010
    [Google Scholar]
  5. Busti E, Cavaletti L, Monciardini P, Schumann P, Rohde M et al. Catenulispora acidiphila gen. nov., sp. nov., a novel, mycelium-forming actinomycete, and proposal of Catenulisporaceae fam. nov. Int J Syst Evol Microbiol 2006; 56:1741–1746 [View Article][PubMed]
    [Google Scholar]
  6. Cavaletti L, Monciardini P, Schumann P, Rohde M, Bamonte R et al. Actinospica robiniae gen. nov., sp. nov. and Actinospica acidiphila sp. nov.: proposal for Actinospicaceae fam. nov. and Catenulisporinae subord. nov. in the order Actinomycetales. Int J Syst Evol Microbiol 2006; 56:1747–1753 [View Article][PubMed]
    [Google Scholar]
  7. Cho S-H, Han J-H, Ko H-Y, Kim SB. Streptacidiphilus anmyonensis sp. nov., Streptacidiphilus rugosus sp. nov. and Streptacidiphilus melanogenes sp. nov., acidophilic actinobacteria isolated from Pinus soils. Int J Syst Evol Microbiol 2008; 58:1566–1570 [View Article][PubMed]
    [Google Scholar]
  8. Liu Z, Rodríguez C, Wang L, Cui Q, Huang Y et al. Kitasatospora viridis sp. nov., a novel actinomycete from soil. Int J Syst Evol Microbiol 2005; 55:707–711 [View Article][PubMed]
    [Google Scholar]
  9. Monciardini P, Cavaletti L, Ranghetti A, Schumann P, Rohde M et al. Novel members of the family Micromonosporaceae, Rugosimonospora acidiphila gen. nov., sp. nov. and Rugosimonospora africana sp. nov. Int J Syst Evol Microbiol 2009; 59:2752–2758 [View Article][PubMed]
    [Google Scholar]
  10. Poomthongdee N, Duangmal K, Pathom-Aree W. Acidophilic actinomycetes from rhizosphere soil: diversity and properties beneficial to plants. J Antibiot 2015; 68:106–114 [View Article][PubMed]
    [Google Scholar]
  11. Zakalyukina Y V, Zenova GM, Zvyagintsev DG. Acidophilic soil actinomycetes. Microbiol (English translation of Mikrobiologiya) 2002; 71:342–345
    [Google Scholar]
  12. Joseph SJ, Hugenholtz P, Sangwan P, Osborne CA, Janssen PH. Laboratory cultivation of widespread and previously uncultured soil bacteria. Appl Environ Microbiol 2003; 69:7210–7215 [View Article][PubMed]
    [Google Scholar]
  13. Grasby SE, Richards BC, Sharp CE, Brady AL, Jones GM et al. The Paint Pots, Kootenay National Park, Canada — a natural acid spring analogue for Mars. Can J Earth Sci 2013; 50:94–108 [View Article]
    [Google Scholar]
  14. Stott MB, Crowe MA, Mountain BW, Smirnova AV, Hou S et al. Isolation of novel bacteria, including a candidate division, from geothermal soils in New Zealand. Environ Microbiol 2008; 10:2030–2041 [View Article][PubMed]
    [Google Scholar]
  15. Reasoner DJ, Blannon JC, Geldreich EE. Rapid seven-hour fecal coliform test. Appl Environ Microbiol 1979; 38:229–236[PubMed]
    [Google Scholar]
  16. Kim J-J, Alkawally M, Brady AL, Rijpstra WIC, Sinninghe Damsté JS et al. Chryseolinea serpens gen. nov., sp. nov., a member of the phylum Bacteroidetes isolated from soil. Int J Syst Evol Microbiol 2013; 63:654–660 [View Article][PubMed]
    [Google Scholar]
  17. Boulygina ES, Kuznetsov BB, Marusina A. I, Tourova TP, Kravchenko IK et al. A study of nucleotide sequences of nifH genes of some methanotrophic bacteria. Microbiology 2002; 71:425–432 [CrossRef]
    [Google Scholar]
  18. Zehr JP, Mcreynolds LA. Use of degenerate oligonucleotides for amplification of the nifH gene from the marine cyanobacterium Trichodesmium thiebautii. Appl Environ Microbiol 1989; 55:2522–2526[PubMed]
    [Google Scholar]
  19. Busti E, Monciardini P, Cavaletti L, Bamonte R, Lazzarini A. Antibiotic-producing ability by representatives of a newly discovered lineage of actinomycetes. Microbiol 2006; 152:675–683 [View Article]
    [Google Scholar]
  20. Brander MA, Jousimies-Somer HR. Evaluation of the RapID ANA II and API ZYM systems for identification of Actinomyces species from clinical specimens. J Clin Microbiol 1992; 30:3112–3116[PubMed]
    [Google Scholar]
  21. Tamura T, Ishida Y, Otoguro M, Suzuki K-I. Catenulispora subtropica sp. nov. and Catenulispora yoronensis sp. nov. Int J Syst Evol Microbiol 2008; 58:1552–1555 [View Article][PubMed]
    [Google Scholar]
  22. Kulichevskaya IS, Kostina LA, Valásková V, Rijpstra WI, Sinninghe Damste ́ JS et al. Acidicapsa borealis gen. nov., sp. nov. and Acidicapsa ligni sp. nov., subdivision 1 Acidobacteria from Sphagnum peat and decaying wood. Int J Syst Evol Microbiol 2012; 62:1512–1520 [View Article][PubMed]
    [Google Scholar]
  23. Vincent M, Guglielmetti G, Cassani G, Tonini C. Determination of double-bond position in diunsaturated compounds by mass spectrometry of dimethyl disulfide derivatives. Anal Chem 1987; 59:694–699 [View Article]
    [Google Scholar]
  24. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article][PubMed]
    [Google Scholar]
  25. Groth I, Schumann P, Rainey FA, Martin K, Schuetze B et al. Demetria terragena gen. nov., sp. nov., a new genus of actinomycetes isolated from compost soil. Int J Syst Bacteriol 1997; 47:1129–1133 [View Article][PubMed]
    [Google Scholar]
  26. Golinska P, Zucchi TD, Silva L, Dahm H, Goodfellow M. Actinospica durhamensis sp. nov., isolated from a spruce forest soil. Antonie van Leeuwenhoek 2015; 108:435–442 [View Article]
    [Google Scholar]
  27. Schumann P. Peptidoglycan structure. Methods Microbiol 2011; 38:101–129 [CrossRef]
    [Google Scholar]
  28. Schleifer KH. Analysis of the chemical composition and primary structure of murein. Methods Microbiol 1985; 18:123–156 [CrossRef]
    [Google Scholar]
  29. Rhuland LE, Work E, Denman RF, Hoare DS. The behavior of the isomers of α,ε-diaminopimelic acid on paper chromatograms. J Am Chem Soc 1955; 77:4844–4846 [View Article]
    [Google Scholar]
  30. Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 2008; 18:821–829 [View Article][PubMed]
    [Google Scholar]
  31. Kim JJ, Kanaya E, Weon HY, Koga Y, Takano K et al. Flavobacterium compostarboris sp. nov., isolated from leaf-and-branch compost, and emended descriptions of Flavobacterium hercynium, Flavobacterium resistens and Flavobacterium johnsoniae. Int J Syst Evol Microbiol 2012; 62:2018–2024 [View Article][PubMed]
    [Google Scholar]
  32. Kim J-K, He D, Liu Q-M, Park H-Y, Jung M-S et al. Novosphingobium ginsenosidimutans sp. nov., with the ability to convert ginsenoside. J Microbiol Biotechnol 2013; 23:444–450 [View Article][PubMed]
    [Google Scholar]
  33. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  34. Zhi X-Y, Li W-J, Stackebrandt E. An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. Int J Syst Evol Microbiol 2009; 59:589–608 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001667
Loading
/content/journal/ijsem/10.1099/ijsem.0.001667
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error