Gilvimarinus japonicus sp. nov., a cellulolytic and agarolytic marine bacterium isolated from coastal debris

Hideyuki Kouzui,1 Koki Tokikawa,2 Masataka Satomi,3 Takumi Negoro,4 Katsuya Shimabukuro4 and Katsuhiko Fujii1,2

1Department of Agriculture, Graduate School of Science and Technology for Innovation, Yamaguchi University, Yoshida, Yamaguchi 753-8515, Japan
2Faculty of Agriculture, Yamaguchi University, Yoshida, Yamaguchi 753-8515, Japan
3National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, Kanazawa, Yokohama 236-8648, Japan
4Department of Chemical and Biological Engineering, National Institute of Technology, Ube College, Tokiwadai, Ube, Yamaguchi 755-8555, Japan

A number of cellulolytic microbes have been isolated from terrestrial environments and are known to contribute to cellulose biodegradation in soil (Bhat & Bhat, 1997), but knowledge of cellulolytic microbes in the marine environment remains limited. Therefore, it is likely that many cellulolytic marine strains remain to be characterized, and it is necessary to isolate them to elucidate their role in cellulose biodegradation in the ocean. We recently isolated a cellulolytic bacterial strain, designated 12-2T, from a piece of cotton rope washed ashore on a beach in Yamaguchi, Japan. Analyses of the 16S rRNA and gyrB gene sequences and DNA base composition suggested that the strain is a member of the genus Gilvimarinus. However, levels of 16S rRNA and gyrB gene sequence similarity between it and the type strains of Gilvimarinus species were no higher than 97.9 and 78.7 %, respectively, suggesting that the strain is distinct. Moreover, the results of DNA–DNA hybridization experiments and physiological characterization clearly differentiated the strain from its closest neighbours. The strain is therefore considered to represent a novel species of the genus Gilvimarinus, for which the name Gilvimarinus japonicus sp. nov. is proposed. The type strain is 12-2T (=NBRC 111987=KCTC 52141T).

A piece of cotton rope fragment (approximately 15 cm in length and 2 cm in diameter) found on a beach in Yamaguchi, Japan (34°24′N 131°23′E), was collected in a sterilized polyethylene bag and brought back to our laboratory. The rope fragment was then unravelled using an autoclaved pair of tweezers on a clean bench, suspended in 40 ml autoclaved artificial seawater (Marine Art SF-1; Tomita Pharmaceuticals) and vortexed vigorously for 1 min. The supernatant (1 ml) was added to 20 ml of autoclaved artificial seawater supplemented with 1.0 g of Whatman no. 7 filter paper, which was cut into fragments (3 × 20

The GenBank/EMBL/DDBJ accession numbers for the 16S rRNA and gyrB gene sequences of strain 12-2T are LC125208 and LC125209, respectively.

Five supplementary figures are available with the online Supplementary Material.
mm average size) by a paper shredder, as a sole carbon source and cultured at 23 °C at 120 r.p.m. We used a temperature of 23 °C for the enrichment, because ambient temperature at the sampling location was 23 °C. Microbial growth was detected by 2 weeks and 20 µl of the culture was inoculated and spread on marine agar 2216 (Becton Dickinson) by a bacterial spreader to isolate strain 12-2T.

Genomic DNA was purified using the procedures described by Pospiech & Neumann (1995). Bacterial cells were grown in 100 ml marine broth 2216 (Becton Dickinson) for 2 weeks at 23 °C and harvested by centrifugation (3000 g for 10 min). The harvested bacterial cells were suspended in Tris—EDTA buffer (pH 8.0) and lysed with lysozyme (final concentration, 2 mg ml−1) and SDS (final concentration, 0.5 %). DNA was then recovered from the lysate by phenol—chloroform extraction, followed by RNase treatment, CTAB treatment and ethanol precipitation. Each procedure was performed twice to obtain highly pure DNA. The partial 16S rRNA (1422 bases) and gyrB (1127 bases) gene sequences were amplified by PCR using KOD FX Neo DNA polymerase (Toyobo). The universal primer set corresponding to positions 8–27 (forward primer) and 1492–1510 (reverse primer) of the Escherichia coli numbering system (Weisburg et al., 1991) was used for 16S rDNA gene identification, and the following primer pair was used for gyrB gene amplification: UP1 (forward: 5′-GAAGTCTACGACGTTCTGCAATCNGGNGNAARTTYGA-3′) and UP2r (reverse: 5′-AGCAGGGAACGGATGTGACGCAGCCRTACNACRTNGCRTCNGTGAT-3′) (Yamamoto & Harayama, 1995). The thermal profile involved 45 cycles: 98 °C for 10 s, 54 °C for 30 s and 68 °C for 60 s. The DNA sequences of the strain were compared with all known sequence data in the GenBank, EMBL and DDBJ databases using the Blast program and the Ribosomal Database Project (http://rdp.cme.msu.edu/). Multiple alignment and reconstruction of phylogenetic trees by the maximum-likelihood method were performed using the MEGA 6 computer program (Edgar, 2004; Tamura et al., 2013). Robustness of the topology of the phylogenetic trees was evaluated by bootstrap analysis with 1000 replications. A phylogenetic tree based on gyrB gene sequences was also reconstructed (Fig. 1b), because this gene is reported to be useful to define the phylogenetic relationships among Gammaproteobacteria (Hatano et al., 2003). The gyrB gene sequence similarities between strain 12-2T and known species were 78.7 % (‘G. agarilyticus’ KCTC 23325T), 76.8 % (G. polysaccharolyticus JCM 19198T) and 67.9 % (G. chinensis DSM 19667T). Hatano et al. (2003) reported that a gyrB gene sequence similarity of approximately 96.5 % would correspond to 70 % DNA—DNA relatedness, thereby suggesting that strain 12-2T is different from the closest related species.

DNA base composition, i.e. guanine—plus—cytosine (G+C) content, was determined by HPLC, as described by Tamaoka & Komagata (1984). The G+C content for the genomic DNA of strain 12-2T was 52.3 mol%, which is consistent with values (48–53 mol%) reported for other members of the genus Gilvimarinus (Cheng et al., 2015). Total lipids were extracted from bacterial cells according to the method described by Bligh & Dyer (1959), and phospholipids were analysed using two-dimensional TLC. Crude lipids of strain 12-2T were separated on silica gel 60 TLC plates (Merck) using two solvent systems, one being chloroform/methanol/water (65: 25: 4, by vol.) and the other chloroform/methanol/acetic acid/water (80: 12: 15: 4, by vol.). Crude lipids of ‘G. agarilyticus’ KCTC 23325T obtained from the Korean Collection for Type Cultures (KCTC) were used as a control. A 50 % sulphuric acid solution was used to detect the lipid spots. Zinnadize (Dittmer) reagent and ninhydrin were used to detect phosphate and free amino groups, respectively. The lipids from strain 12-2T contained diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine (Fig. S1, available in the online Supplementary Material), which are markers for the genus Gilvimarinus (Cheng et al., 2015). Fatty acid methyl esters were prepared using a Nakarai fatty acid methylation kit and were analysed using a Parvum2 gas chromatograph—mass spectrometer (GC/MS; Shimadzu) under the following conditions: column, Rxi-5ms capillary column (30 m × 0.25 mm i. d.; Restek); injection volume, 1 µl; carrier gas, helium (17 ml min−1); temperature gradient, 70–330 °C at 5 °C min−1, and 330 °C for 3 min. The energy for electron impact ionization was 70 eV. ‘Gilvimarinus agarilyticus’ KCTC 23325T and G. polysaccharolyticus JCM 19198T, which was obtained from the Japan Collection of Microorganisms (JCM), were used as controls. Table 1 shows the fatty acid compositions of the tested strains. Of the characteristic fatty acids of the genus Gilvimarinus (C16:0, C18:1ω7c and/or iso-C15:0 2-OH, C18:1ω7c) Cheng et al., 2015), C16:0 and C16:1ω7c were found in strain 12-2T as well as its closest neighbours. Interestingly, C18:1ω7c was not found in the fatty acid profile of strain 12-2T, although it is one of the major fatty acids in the genus Gilvimarinus. iso-C15:0 was found in all tested strains, but we could not isolate or detect its hydroxy derivative (iso-C15:0 2-OH) due to a limitation in our GC/MS analytical conditions.

The isoprenoid quinone type was determined by one-dimenational TLC and HPLC, according to the methods described by Yamada & Kuraishi (1982). Total acetone-soluble cell extracts were separated by one-dimensional TLC with benzene as the eluent. Isoprenoid length was analysed by HPLC using an Inertsil ODS-3V column (GL Science) for monitoring of UV absorption at 275 nm. As the mobile phase (flow rate, 0.7 ml min−1), a mixture of 70 % methanol/30 % 2-propanol was used. ‘Gilvimarinus agarilyticus’ KCTC 23325T...
Fig. 1. Phylogenetic tree reconstructed by the maximum-likelihood method based on 16S rRNA gene (a) and gyrB gene (b) sequences of strain 12-2T and related species. The 16S rRNA gene sequence of *Limnobacter litoralis* NBRC 105857T (AB682299) and gyrB gene sequence of *Pandoraea oxalativorans* NBRC 106091T (AB469785) were used as the outgroup. Bootstrap values \geq 70% (of 1000 samplings) are shown at the internodes. Bars, evolutionary distance (K_{nuc}) of 0.01 and 0.1 for the 16S rRNA gene and gyrB gene, respectively (Kimura, 1980).
and G. polysaccharolyticus JCM 19198^T were used as reference strains. The predominant respiratory quinone of strain 12-2^T was ubiquinone-8 (Q-8), which was also found in G. agarilyticus KCTC 23325\(^T\) and G. polysaccharolyticus JCM 19198^T. The presence of Q-8 as the predominant isoprenoid quinone is typical for Gilviminus species (Cheng et al., 2015).

The phenotypic characteristics of strain 12-2^T were subsequently studied. The Gram reaction was tested as described by Yokota (1999). Streptomyces abietis NBRC 109094\(^T\) obtained from NITE Biological Resource Center (NBRC) and E. coli JM109 (Takara Bio) were used as reference strains. Motility was tested in a semi-solid marine agar containing 0.4% (w/v) agar. Cell morphology was examined by optical microscopy, scanning electron microscopy and transmission electron microscopy. For scanning electron microscopy, cells of strain 12-2^T grown on marine agar at 30 °C for 7 days were fixed with 2.5% glutaraldehyde in 50 mM phosphate buffer (pH 7.0) for 4 h at room temperature. The fixed cells were subsequently washed with 1 ml of 50 mM phosphate buffer (pH 7.0) three times, dehydrated with graded (50, 70, 80, 90 and 100%) ethanol and frozen in 100% t-butanol at −20 °C for 20 min. The cells were then freeze-dried overnight in a plastic desiccator connected to a G-10DA rotary pump (ULVAC), shadowed with platinum from an angle of 22.5° and subsequently coated with carbon in an SVC-700TM/7PS80 coater (Sanyu Electron) to obtain the replica. After hydrofluoric acid treatment to remove the coverslip, the replica was observed using an EM-2100 transmission electron microscope (JEOL), and images were recorded with a KeenView CCD camera (OLYMPUS). Anaerobic growth was assayed by cultivating the strains on marine agar for 1 week under anaerobic conditions with an AnaeroPack Kenki (Mitsubishi Gas Chemical). Oxidase activity was assayed using Bactident oxidase strips (Merck) and catalase activity was determined by bubble production in 3% hydrogen peroxide solution. The temperature range for growth and optimal growth temperature were determined by cultivation at 4, 10, 15, 20, 25, 28, 30, 32, 35, 37 and 40 °C on marine agar and in 0.1% (w/v) cellobiose-supplemented marine broth 2216 (CMB), respectively. NaCl tolerance and the optimal NaCl concentration were studied using NaCl-free marine agar and NaCl-free CMB, which were prepared according to the Difco manual (Becton Dickinson), with different NaCl concentrations (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12 and 15%, w/v). The pH range for growth and the optimal pH were determined by cultivating the strain with CMB which was adjusted to pH 5.0–10.0 (in 0.5 pH unit intervals) using appropriate buffers (50 mM MES-NaOH for pH 5.0–6.5, 50 mM HEPES-NaOH for pH 7.0–8.0, 50 mM Tricine-HCl for pH 8.5–9.0 and 50 mM CAPSO-NaOH for pH 9.5–10.0).

The physiological characteristics were examined using API 20NE and API 50CH test strips (bioMérieux) according to the manufacturer’s instructions, except that cells were suspended in Marine Art SF-1 artificial seawater for API 20NE and in marine oxidation-fermentation medium (Leifson, 1963) for API 50CH. Results for API tests were observed over a period of 5 days at 30 °C. Susceptibility to antibiotics was determined on marine agar using discs containing the following antibiotics (µg per disc unless stated otherwise): amikacin (30), amoxicillin (10), ampicillin (10), carbenicillin (100), chloramphenicol (30), ciprofloxacin hydrochloride (5), erythromycin (15), gentamicin (10), kanamycin (30), lincomycin (15), nalidixic acid (30), neomycin (30), norfloxacin (30), novobiocin (10), penicillin G (10 IU), polymyxin B (300 U), streptomycin (10), sulfamethoxazole (1.25), tetracycline (30), trimethoprim (5) and vancomycin (30), according to Cheng et al. (2015). The inhibition of cell growth by the antibiotics was observed after 5 days of incubation at 30 °C. Gilvimirius agarilyticus KCTC 23325^T and G. polysaccharolyticus JCM 19198^T were used for comparison.

The optical micrograph of Gram-stained cells revealed that strain 12-2^T was Gram-stain-negative (Fig. S2) and its cells

<table>
<thead>
<tr>
<th>Fatty acid</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saturated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C14:0</td>
<td>ND</td>
<td>3.3</td>
<td>1.9</td>
</tr>
<tr>
<td>C15:0</td>
<td>3.6</td>
<td>2.6</td>
<td>2.6</td>
</tr>
<tr>
<td>C16:0</td>
<td>24.9</td>
<td>21.5</td>
<td>17.2</td>
</tr>
<tr>
<td>C17:0</td>
<td>4.1</td>
<td>5.0</td>
<td>2.4</td>
</tr>
<tr>
<td>C18:0</td>
<td>9.3</td>
<td>10.5</td>
<td>2.3</td>
</tr>
<tr>
<td>Unsaturated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C16: 1-9c</td>
<td>14.7</td>
<td>15.3</td>
<td>34.4</td>
</tr>
<tr>
<td>C16: 1-7c</td>
<td>5.8</td>
<td>5.0</td>
<td>0.2</td>
</tr>
<tr>
<td>C18: 1-9c</td>
<td>5.1</td>
<td>2.4</td>
<td>ND</td>
</tr>
<tr>
<td>C18: 1-7c</td>
<td>ND</td>
<td>21.1</td>
<td>18.2</td>
</tr>
<tr>
<td>C18: 1-6c</td>
<td>4.0</td>
<td>1.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Branched chain</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>iso-C15: 0</td>
<td>5.8</td>
<td>2.5</td>
<td>4.6</td>
</tr>
<tr>
<td>anteiso-C15: 0</td>
<td>10.9</td>
<td>3.5</td>
<td>ND</td>
</tr>
<tr>
<td>iso-C16: 0</td>
<td>ND</td>
<td>ND</td>
<td>1.7</td>
</tr>
<tr>
<td>anteiso-C16: 0</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>iso-C17: 0</td>
<td>4.8</td>
<td>2.6</td>
<td>0.9</td>
</tr>
<tr>
<td>anteiso-C17: 0</td>
<td>5.4</td>
<td>2.3</td>
<td>6.6</td>
</tr>
<tr>
<td>Others (unidentified)</td>
<td>1.6</td>
<td>1.3</td>
<td>6.9</td>
</tr>
</tbody>
</table>

Table 1. Fatty acid compositions of strain 12-2^T and its closest neighbouring species

Strains: 1, 12-2^T; 2, "Gilvimirius agarilyticus" KCTC 23325^T; 3, G. polysaccharolyticus JCM 19198^T. Values are percentages of total fatty acids. ND, Not detected (<0.1%).
Table 2. Differential characteristics between strain 12-2^T and its closest phylogenetic neighbours

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Growth at with:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4°C</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>37°C</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>10% (w/v) NaCl</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>12% (w/v) NaCl</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>Activity of (API 20NE):</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrate reduction</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>Urease</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>Glucose assimilation</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Arabinose assimilation</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>N-Acetyl glucosamine assimilation</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Maltose assimilation</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>Acid production from (API 50CH):</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-Arabinose</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>D-Fructose</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>D-Mannose</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>D-Mannitol</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Amygdalin</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>D-Lactose</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Melibiose</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>Antibiotic sensitivity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amikacin</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Carbenicillin</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Lincomycin</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Vancomycin</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

were rod-shaped (0.3–0.5 μm in width and 1.5–2.0 μm in length, Fig. S3a). Cultivation of the strain on semi-solid agar suggested that cells were motile. The existence of a flagellum was confirmed by transmission electron microscopy (Fig. S3b). The physiological features that differentiated strain 12-2^T from known *Gilvimarinus* species are presented in Table 2. While all tested strains possessed many common features, several characteristics that discriminate strain 12-2^T from known neighbours were found. For instance, *G. polysaccharolyticus* JCM 19198^T and *G. chinensis* DSM 19667^T can grow at 4°C, but strain 12-2^T and *G. agarilyticus* KCTC 23325^T cannot. In contrast, *G. agarilyticus* KCTC 23325^T and *G. chinensis* DSM 19667^T can grow at 37°C, but strain 12-2^T and *G. polysaccharolyticus* JCM 19198^T cannot. The optimal growth temperature for strain 12-2^T was 28–30°C (Fig. S4a), which is consistent with that for *G. agarilyticus* KCTC 23325^T (25–30°C), *G. polysaccharolyticus* JCM 19198^T (28–30°C) and *G. chinensis* DSM 19667^T (25–30°C) (Du et al., 2009; Kim et al., 2011; Cheng et al., 2015). Strain 12-2^T and *G. agarilyticus* KCTC 23325^T can grow in the presence of 0–12% (w/v) NaCl, but *G. polysaccharolyticus* JCM 19198^T and *G. chinensis* DSM 19667^T cannot grow at 12% NaCl. The optimal NaCl concentration for strain 12-2^T was 2–3% (w/v) (Fig. S4b), while that for *G. agarilyticus* KCTC 23325^T, *G. polysaccharolyticus* JCM 19198^T and *G. chinensis* DSM 19667^T was 2–3% (Kim et al., 2011), 1–3% (Cheng et al., 2015) and 5% (Du et al., 2009), respectively. The optimal pH for growth of strain 12-2^T was 7.5–8.0 (Fig. S4c), while that for *G. agarilyticus* KCTC 23325^T and *G. polysaccharolyticus* JCM 19198^T was 7.0 (Kim et al., 2011; Cheng et al., 2015). Moreover, strain 12-2^T could be distinguished from known *Gilvimarinus* species by resistance to amikacin and carbenicillin, and inability to produce acid from D-lactose.

These results suggest that strain 12-2^T belongs to the genus *Gilvimarinus* but is distinctive from known species. Therefore, to obtain more conclusive information on the relationship between the new strain and other *Gilvimarinus* species, DNA–DNA hybridization experiments were performed using the microplate hybridization method (Ezaki et al., 1989) and photobiotin labelling. Table 3 shows the DNA–DNA hybridization values among these species. Relatively low values (approximately 23%) were detected among the strain and its known neighbours. A phylogenetically defined species has been proposed to comprise strains that exhibit >70% DNA–DNA hybridization values (Wayne et al., 1987); therefore, our findings clearly indicate that strain 12-2^T is not conspecific to known *Gilvimarinus* species.

The 16S rRNA gene partial sequences of some *Gilvimarinus* strains ([Gilvimarinus* sp. CPA-136, KT324940 (1069 bp); Gilvimarinus* sp. CPA-143, GenBank accession no. KT324947 (975 bp); and *Gilvimarinus* sp. NSP500, FR750935 (1397 bp)]) were recently deposited in the international DNA databases, including GenBank, EMBL and DDBJ. Phylogenetic trees of strain 12-2^T and the above strains based on 16S rRNA gene partial sequences were thus reconstructed (Fig. S5). All strains revealed lineages different from that for strain 12-2^T and 16S
rRNA gene sequence similarities of strains CPA-136, CPA-143 and NSP500 to strain 12-2 was 98.9, 98.9 and 98.7 %, respectively.

In conclusion, a phylogenetic analysis based on 16S rRNA and gyrB gene sequences suggests that strain 12-2 is distinct from its known neighbours, ‘G. agarilyticus’, G. polysaccharolyticus and G. chinensis. The biochemical and phenotypic differences also support this conclusion. Low DNA–DNA relatedness clearly demonstrated that strain 12-2 is distinguished from Gilvimarinus species with validly published names and is considered to represent a novel species of the genus Gilvimarinus, for which the name Gilvimarinus japonicus sp. nov. is proposed.

Description of Gilvimarinus japonicus sp. nov.

Gilvimarinus japonicus (ja.po’ni.cus. N.L. masc. adj. japonicus Japanese, pertaining to the Sea of Japan, where the type strain was isolated).

Cells are rod-shaped (0.3–0.5 µm in width and 1.5–2.0 µm in length) and motile. Colonies are circular and entire, and are dark ivory on marine agar 2216. Cells are motile with a single polar flagellum. Growth occurs at 10 ± 2°C (optimum 25–30°C) and at pH 6.0–9.5 (optimum pH 7.5–8.0). Growth occurs in the presence of 0–3 % (w/v) NaCl (optimum 2–3 %). Catalase- and oxidase-positive. In API 20NE tests, cells are positive for urease activity, aesculin hydrolysis, indole production, nitrate reduction, arginine dihydrolase activity, gelatin hydrolysis, acetylglucosamine assimilation, but negative for nitrate assimilation of arabinose, mannitol, gluconate, capric acid, adipic acid, malic acid, citric acid and phenylacetic acid. In API 20NE, cells contain diphosphatidylglycerol, phosphatidylglycerol and phospha-tidylethanolamine, and the major cellular fatty acids (>10 %) include C16:0ω9c, anteiso-C15:0 and C16:0. The major isopenoid quinone is Q-8.

The type strain, 12-2T (=NBRC 111987T=KCTC 52141T), was isolated from a piece of cotton rope fragment washed ashore on a beach in Yamaguchi, Japan. The DNA G+C content of the type strain is 52.3 mol %.

Acknowledgements

This study was funded by a Grant-in-Aid for Scientific Research (C: 24510101) from the Japan Society for the Promotion of Science to K.F.

References

Table 3. DNA–DNA hybridization values among strain 12-2T and the type strains of closely related *Gilvimarinus* species

<table>
<thead>
<tr>
<th>Strain</th>
<th>Percentage hybridization with labelled DNA from:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12-2T</td>
</tr>
<tr>
<td>12-2T</td>
<td>100 (n=3)</td>
</tr>
<tr>
<td>‘G. agarilyticus’ KCTC 23325T</td>
<td>17±2.0 (n=3)</td>
</tr>
<tr>
<td>G. polysaccharolyticus JCM 19198T</td>
<td>4.9±0.5 (n=3)</td>
</tr>
</tbody>
</table>

International Journal of Systematic and Evolutionary Microbiology 66

5422

