Thalassomonas eurytherma sp. nov., a marine proteobacterium

Cong Sun,¹ Ying-Yi Huo,²,³ Jin-Jin Liu,¹ Jie Pan,¹ Yun-Zhen Qi,⁴ Xin-Qi Zhang,¹ Yong Zhang,⁵ Gang Zheng⁶ and Min Wu¹

¹College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
²Laboratory of Marine Ecosystem and Biogeochemistry, State Oceanic Administration, Hangzhou 310012, PR China
³Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, PR China
⁴College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
⁵Hangzhou Hunter Biotechnology, Hangzhou 311231, PR China
⁶Ocean Research Center of Zhoushan, Zhejiang University, Zhoushan 316021, PR China

Two Gram-staining-negative, aerobic, rod-shaped bacterial strains, designated Za6a-12T and Za6a-17, were isolated from seawater of the East China Sea. Cells of Za6a-12T and Za6a-17 were approximately 1.5–2.0 μm×0.5–0.7 μm and motile by a single polar flagellum. Strains grew optimally at pH 7.5–8.0, 28 °C, and in the presence of 2.5–3.0 % (w/v) NaCl. Chemotaxonomic analysis showed that the predominant respiratory quinone of strains Za6a-12T and Za6a-17 was ubiquinone-8 (>79 %), and the major fatty acids were C₁₄:₀, C₁₆:₁₀C7c and/or iso-C₁₅:₀ 2-OH, C₁₆:₀ and C₁₇:₁₀C8c. Their DNA G+C contents were 42.7 mol% and 42.8 mol%, respectively. 16S rRNA gene sequence analysis revealed that the isolates belonged to the genus *Thalassomonas* and showed the highest sequence similarity to *Thalassomonas loyana* CBMAI 722¹ (95.9 %). Strains Za6a-12T and Za6a-17 could be differentiated from *T. loyana* CBMAI 722¹ according to their phenotypic and chemotaxonomic features, DNA G+C contents and fatty acid composition. On the basis of these features, we propose strains Za6a-12T and Za6a-17 to be representatives of a novel species of the genus *Thalassomonas* with the name *Thalassomonas eurytherma* sp. nov. suggested. Strain Za6a-12T (=CGMCC 1.12115T=JCM 18482²) is the type strain of this novel species.

The genus *Thalassomonas* was first proposed by Macián et al. (2001), and the genus description was later emended by Jean et al. (2006). Members of this genus are Gram-staining-negative rods belonging to the class Gammaproteobacteria. They are catalase-positive and oxidase is usually present. Cells are non-motile or motile by means of a single polar or subpolar flagellum and most strains are halophilic growing in 2–4 % NaCl. They are also mostly mesophilic, growing at 20–35 °C, but not at 45 °C; some can grow at 4–37 °C. Cells contain either C₁₆:₁₀C7c and/or iso-C₁₅:₀ 2-OH or C₁₆:₀ as the most abundant fatty acid(s) and Q-8 as the major respiratory quinone. At the time of writing, the major respiratory quinone. At the time of writing, the genus *Thalassomonas* comprised seven species with validly published names: *Thalassomonas viridans* (Macián et al., 2001), *Thalassomonas ganghwensis* (Yi et al., 2004), *Thalassomonas loyana* (Thompson et al., 2006), *Thalassomonas agarivorans* (Jean et al., 2006), *Thalassomonas actiniarum* (Hosoya et al., 2009), *Thalassomonas haliotis* (Hosoya et al., 2009) and *Thalassomonas agariphorans* (Park et al., 2011). In the present study, two marine strains, Za6a-12T and Za6a-17, were isolated from a seawater sample collected from the Zhoushan Islands in the East China Sea. The aim was to determine the taxonomic position of these strains using a polyphasic approach, to include the identification of their phenotypic and chemotaxonomic features and a phylogenetic analysis.

The seawater sample was collected in July 2010 from the Zhoushan Islands (122° 59' 37" E 29° 25' 27" N) of the East China Sea at a depth of 58 m (temperature 19.5 °C, salinity 31.3 %). The sample was diluted, using a tenfold series dilution method, spread on modified ZoBell 2216E agar medium (Oppenheimer & ZoBell, 1952) and incubated at 25 °C. The modified ZoBell 2216E agar medium
cultivation, all strains used in this study (Za6a-12T, Za6a-17, agar; MA; Oppenheimer & ZoBell, 1952). For normal routinely cultured on ZoBell 2216E agar medium (marine and Za6a-17. After repeated purifying, the strains were contained (per litre distilled water): yeast extract 0.5 g, peptone 0.1 g, ferric citrate 0.1 g, NaCl 19.45 g, MgCl₂ 6H₂O 8.8 g, CaCl₂ 2H₂O 1.8 g, KCl 0.55 g, NaHCO₃ 0.16 g, Na₂SO₄ 3.24 g, KBr 0.08 g, SrCl₂ 34 mg, H₂BO₄ 22 mg, NaSiO₄ 4 mg, NaF 2.4 mg, NH₄NO₃ 1.6 mg, Na₂HPO₄ 8 mg, agar 20 g, pH 7.4 adjusted with NaOH. After 48 h of incubation, two cream colonies were collected and designated Za6a-12T and Za6a-17. After repeated purifying, the strains were determined as described by Wu et al. (2010).

Isoprenoid quinones were analysed using reversed-phase HPLC (Komagata & Suzuki, 1987). The cells for fatty acid methyl ester (FAME) analysis were incubated on MA at 28 °C for 24 h and analysed according to the instructions of the Microbial Identification System (MIDI; Microbial ID) with standard MIS Library Generation Software version 4.5. Genomic DNA was collected using the method described by Huss & Doty (1962) and hydrolysed with P1 nuclease. The nucleotides were dephosphorylated with calf intestine alkaline phosphatase. The G+C content of these deoxyribonucleosides was determined by reverse-phase HPLC and calculated from the ratio of deoxyguanosine (dG) and thymidine (dT) (Mesbah & Whitman, 1989). DNA–DNA hybridizations were performed by the thermal denaturation and renaturation method of De Ley et al. (1970) as modified by Huss et al. (1983), using a Beckman DU 800 Spectrophotometer.

The 16S rRNA gene was amplified by PCR. PCR products were cloned into pMD 19-T vectors (TaKaRa) for sequencing (Xu et al., 2007). The complete 16S rRNA sequences of strains Za6a-12T and Za6a-17 (1346 bp and 1370 bp, respectively) were identified on the EzTaxon-e tool. Phylogenetic trees were reconstructed using the neighbour-joining method (Saitou & Nei, 1987), maximum-parsimony (Fitch, 1971) and maximum-likelihood (Felsenstein, 1981) methods with the MEGAS program package (Tamura et al., 2011). For the neighbour-joining method, evolutionary distances were calculated with the MEGA program package, according to the algorithm of the Kimura two-parameter model (Kimura, 1980).

Single carbon source assimilation tests were performed in basal medium (BM; Baumann et al., 1984) supplemented with 0.01 % (w/v) yeast extract and the corresponding filter-sterilized sugar (0.2 % w/v), organic acid (0.1 % w/v) or amino acid (0.1 % w/v). The basal medium (BM) contained (per litre distilled water): NH₄Cl (1.0 g), KH₂PO₄ 0.075 g, FeSO₄ 7H₂O 0.028 g, Tris/ HCl (1M, pH 7.5) 0.5 m and half-strength artificial seawater (ASW). ASW contained (per litre distilled water): NaCl 50 g, MgSO₄·7H₂O 24.6 g, KCl 1.5 g, CaCl₂·2H₂O 2.9 g. Oxidation of 1 % (w/v) p-aminomethylphenylxilate was used to detect oxidase activity. Catalase activity was determined by observing bubble production in 3 % (v/v) H₂O₂ solution with optical microscopy (BX40; Olympus) and transmission electron microscopy (JEM-1230; JEOL) using exponentially growing cells incubated in MA for 24 h.

Growth at various NaCl concentrations (0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 5, 7.5 and 10 %, w/v) was determined according to the method of Dong & Cai (2001). The ability to hydrolyse aesculin, casein and gelatin were determined by observing bubble production in 3 % (v/v) H₂O₂ solution with optical microscopy (BX40; Olympus) and transmission electron microscopy (JEM-1230; JEOL) using exponentially growing cells incubated in MA for 24 h.

For the neighbour-joining method, evolutionary distances were calculated using the MEGA program package, according to the algorithm of the Kimura two-parameter model (Kimura, 1980).
M-M1T and \textit{T. ganghwensis} JC2041T (Fig. 1). In this cluster, strain Za6a-12T was found to be closely related to strain Za6a-17 in a new branch; this was supported by a high bootstrap value (100 % with all three methods). The DNA–DNA relatedness value of 91 % between strain Za6a-12T and Za6a-17 was significantly higher than the value of 70 % considered to be the threshold for the delineation of species (Wayne et al., 1987).

Strain Za6a-12T grew optimally at pH 7.5, at 28 °C, and in the presence of 2.5–3.0 % (w/v) NaCl. Strain Za6a-17 grew optimally at pH 7.5–8.0, at 28 °C, and in the presence of 2.5 % (w/v) NaCl. Other physiological and biochemical characteristics of strains Za6a-12T and Za6a-17 are included in the species description. A comparison of the physiological and biochemical characteristics of strains Za6a-12T, Za6a-17, \textit{T. loyana} CBMAI 722T and \textit{T. viridans} CECT 5083T are shown in Table 1 and Table S1 (available in the online Supplementary Material). Several characteristics were found to discriminate strains Za6a-12T and Za6a-17 from \textit{T. loyana} CBMAI 722T and \textit{T. viridans} CECT 5083T. In particular, strains Za6a-12T and Za6a-17 could grow at 4 and 42 °C, while other species of the genus could not. All strains were susceptible to (μg per disc unless stated otherwise) amoxicillin (10), ampicillin (10), carbenicillin (100), ceftaxime (30), ceftiraxone (30), cefoxitin (30), chloramphenicol (30), erythromycin (10), nitrofurantoin (300), neomycin (30), nystatin (100), streptomycin (10), tetracycline (30) or tobramycin (10). \textit{T. loyana} CBMAI 722T and \textit{T. viridans} CECT 5083T were susceptible to kanamycin (30), while Za6a-12T and Za6a-17 were not.

Strains Za6a-12T and Za6a-17 contained straight-chain fatty acids and unsaturated fatty acids such as C14 : 0, C16 : 0 and C17 : 1c ; these fatty acids were also considered to be major components of most species of the genus \textit{Thalassomonas} (Macian et al., 2001; Yi et al., 2004; Thompson et al., 2006; Jean et al., 2006; Park et al., 2011). The most abundant fatty acid of strains Za6a-12T and Za6a-17 were summed features 3 (C16 : 1c and/or iso-C15 : 02-OH) as with most species of the genus \textit{Thalassomonas} (Jean et al., 2006). The fatty acid patterns of strains Za6a-12T and Za6a-17 were similar to those of \textit{T. loyana} CBMAI 722T and \textit{T. viridans} CECT 5083T, but there were differences in the proportions of some fatty acids (Table S1). The predominant respiratory quinone of the isolates was ubiquinone-8 (＞97 %) as with other species

Fig. 1. Neighbour-joining tree using the Kimura two-parameter model based on 16S rRNA gene sequences, showing the phylogenetic relationships of the novel isolates and related members of the genus \textit{Thalassomonas} and other relative genera. Bootstrap values are based on 1000 replicates; values >70 % are shown. Filled circles indicate nodes also obtained in both maximum-likelihood and maximum-parsimony trees. Bar, 0.01 substitutions per nucleotide position.
of the genus *Thalassomonas* (Yi et al., 2004; Hosoya et al., 2009; Park et al., 2011). The G+C contents of strains Za6a-12\(^T\) and Za6a-17 were 42.7 mol% and 42.8 mol%, respectively (as determined by HPLC), which discriminates the isolates from *T. loyana* CBMAI 722\(^T\) (39.3 mol%, Thompson et al., 2006) and *T. viridans* CECT 5083\(^T\). Unless stated otherwise, data were obtained from this study under identical growth conditions.

Table 1. Differential characteristics of strains Za6a-12\(^T\) and Za6a-17, *Thalassomonas loyana* CBMAI 722\(^T\) and *Thalassomonas viridans* CECT 5083\(^T\).

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pigment</td>
<td>Cream</td>
<td>Cream</td>
<td>Cream</td>
<td>Green*</td>
</tr>
<tr>
<td>Growth at 4 and 42 °C</td>
<td>+</td>
<td>+</td>
<td>-†</td>
<td>-*</td>
</tr>
<tr>
<td>NaCl range for growth (%)</td>
<td>1.5-3.5</td>
<td>1.5-3.0</td>
<td>0-10.0†</td>
<td>2-4*</td>
</tr>
<tr>
<td>Oxidase</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nitrate reduction</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hydrolysis of:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tween 60</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Urea</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Production of:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arginine dihydrolase</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>α-Chymotrypsin</td>
<td>-</td>
<td>-</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>β-Galactosidase</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Acid production from:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amygdalin</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Arbutin</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>Cellobiose</td>
<td>+</td>
<td>+</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>Gentiose</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5-Ketogluconate</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>d-Glucose</td>
<td>+</td>
<td>+</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>Ribose</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>Starch</td>
<td>+</td>
<td>+</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>DNA G+C content (mol%)</td>
<td>42.7</td>
<td>42.8</td>
<td>39.3†</td>
<td>48.4*</td>
</tr>
</tbody>
</table>

*Data from Macián et al., 2001.
†Data from Thompson et al., 2006.

On the basis of 16S rRNA gene sequence comparisons and their physiological and chemotaxonomic characteristics, it is proposed that strains Za6a-12\(^T\) and Za6a-17 represent a novel species of the genus *Thalassomonas* for which the name *Thalassomonas eurytherma* sp. nov. is proposed.

Description of *Thalassomonas eurytherma* sp. nov.

Thalassomonas eurytherma (eu.ry.ther'ma. Gr. adj. euryys wide; Gr. adj. thermos hot; N.L. fem. adj. eurytherma able to tolerate a wide range of temperatures.)

Cells are Gram-staining-negative, aerobic, rod-shaped, approximately 1.5–2.0 µm × 0.5–0.7 µm. Cells are motile by a single polar flagellum. After 2 days of incubation at 28 °C on MA colonies are 1–2 mm in diameter, circular, smooth, elevated and cream. The pH growth range is 6.5–9.0. The temperature range for growth is 4–42 °C. Cultures grow in the presence of 1.5–3.5% (w/v) NaCl, optimally at pH 7.5–8.0, at 28 °C, and in the presence of 2.5–3.0% (w/v) NaCl. Oxidase- and catalase-positive. Positive for the degradation of tyrosine, casein, starch, gelatin, aesculin, Tween 20, Tween 40 and Tween 80. DNA and Tween 60 are not hydrolysed. Nitrate is not reduced to nitrite. Negative for indole and H₂S production and in the methyl red test. Positive in the Voges–Proskauer test. In API 20NE tests, glucose fermentation is negative. β-Galactosidase and α-glucosidase are positive. In API ZYM tests, alkaline phosphatase, leucine arylamidase, acid phosphatase and naphthol-AS-BI-phosphohydrolase are positive. Esterase (C4), esterase lipase (C8), valine arylamidase, cystine arylamidase and α-glucosidase are weakly positive. Lipase (C14), trypsin, α-chymotrypsin, α-galactosidase, β-galactosidase, β-glucuronidase, β-glucosidase, N-acetyl-β-glucosaminidase, α-mannosidase and α-fucosidase are negative. Acid is produced from d-glucose, N-acetylglucosamine, amygdalin, cellobiose, maltose, starch, gentiobiose, potassium 2-ketogluconate and potassium 5-ketogluconate, but not glycerol, erythritol, D-arabinose, L-arabinose, D-ribose, D-xylitol, D-xylulose, L-xylulose, D-adonitol, methyl β-D-xylulopyranoside, D-galactose, D-fructose, D-mannose, L-sorbose, L-rhamnose, dulcitol, inositol, D-mannitol, D-sorbitol, methyl α-D-mannopyranoside, methyl α-D-glucopyranoside, arbutin, ascin, lactose, melibiose, sucrose, trehalose, inulin, melezitose, raffinose, glycosen, xylitol, turanose, D-lyxose, D-tagatose, D-fucose, L-fucose, D-arabitol, D-arabitol or potassium gluconate (API 50CH). The following substrates are utilized for growth: L-arabinose, erythritol, mannitol, L-rhamnose, D-mannose, maltose, xylitol, D-sorbitol, dulcitol, melezitose, sucrose, D-glucose, pyruvate, butyrate, formate, propionate, L-glutamine, asparagine, L-ornithine, L-threonine, L-valine, L-leucine, L-alanine, L-proline, L-phenylalanine and L-isoleucine. The following compounds are not utilized as sole carbon sources: α-lactose, ethanol, tartrate, fumaric acid, succinate, bezonic acid, L-glutamic acid, L-cysteine, L-cysteine, L-methionine, L-glucose and L-tryptophan. Assimilation of xylitol, L-sorbose, D-ribose, glycerol and L-histidine are weakly positive. The predominant respiratory quinone is ubiquinone-8 (>97%). The major fatty acids are C₁₄:₀, C₁₆:₀, C₁₇:₁ and/or iso-C₁₅:₀ 2-OH, C₁₆:₀ and C₁₇:₀ 3-OH. The DNA G+C content is 42.7–42.8 mol% (type strain, 42.7 mol%).

The type strain is Za6a-12\(^T\) (=CGMCC 1.12115\(^T\)=JCM 18482\(^T\)), isolated from the Zhoushan Islands in the East China Sea; strain Za6a-17 (=CGMCC 1.12116=JCM 18483) was isolated from the same location.

ACKNOWLEDGEMENTS

This work was supported by grants from Zhejiang Public Technology Research and Social Development Project (2011c23077)
REFERENCES

