Gibbsiella papilionis sp. nov., isolated from the intestinal tract of the butterfly *Mycalesis gotama*, and emended description of the genus *Gibbsiella*

Pil Soo Kim, Na-Ri Shin, Joon Yong Kim, Ji-Hyun Yun, Dong-Wook Hyun and Jin-Woo Bae

Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul 130-701, Korea

A novel Gram-negative, non-motile, facultative anaerobic and rod-shaped bacterium, designated strain LEN33^T, was isolated from the intestinal tract of a butterfly (*Mycalesis gotama*). Strain LEN33^T grew optimally at 37 °C in the presence of 1 % (w/v) NaCl and at pH 9. The novel strain was oxidase-negative and catalase-positive. The major cellular fatty acids were C_{14:0}, C_{16:0} and cyclo-C_{17:0}. Strain LEN33^T contained two unidentified lipids, three unidentified aminophospholipids, phosphatidylethanolamine (PE) and phosphatidylglycerol (PG). The major isoprenoid quinone was ubiquinone-8 (Q-8). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain LEN33^T was most closely related to *Gibbsiella quercinecans* FRB 97^T and *Gibbsiella dentisursi* NUM 1720^T, with 98.7 % similarities. DNA–DNA hybridization experiments indicated less than 40.7 ± 2 % relatedness to the closest phylogenetic species, *G. quercinecans* FRB 97^T. The G+C content of genomic DNA was 58.7 mol%. Phenotypic, phylogenetic and genotypic analysis indicated that strain LEN33^T represents a novel species within the genus *Gibbsiella*, for which the name *Gibbsiella papilionis* is proposed. The type strain is referred to as LEN33^T (=KACC 16707^T=JCM 18389^T). An emended description of the genus *Gibbsiella* is also proposed.

Insects are the most abundant group of metazoans (May & Beverton, 1990). Researchers estimate that 1.25 million to 10 million species of insects exist, potentially representing over 90 % of all animals (Erwin, 1982, Vilmos & Kurucz, 1998). Due to the size of the insect population, most of the micro-organisms in their gastrointestinal tracts (GIT) are unidentified. These underexplored microbiota could be used in the development of antibiotics or other medications (Fischbach & Walsh, 2009). Identifying the bacteria in the GIT of insects might help prevent disease in the human population (Scully & Bidochka, 2006). The bacterium described below was isolated from the intestinal tracts of a butterfly during an investigation of the microbial ecology of insects in Korea.

The genus *Gibbsiella*, which belongs to the family *Enterobacteriaceae*, was first introduced by Brady *et al.* (2010). At present, the genus contains two species: *Gibbsiella quercinecans* (Brady *et al.*, 2010) and *Gibbsiella dentisursi* (Saito *et al.*, 2012). *G. quercinecans* and *G. dentisursi* are Gram-negative facultative anaerobic and immotile bacteria. *G. quercinecans* was isolated from diseased oak trees and *G. dentisursi* was isolated from the oral cavity of a bear. In this paper, we described a novel strain of a species of the genus *Gibbsiella*, designated LEN33^T, based on the results of physiological, biochemical and genotypic investigations.

Strain LEN33^T was isolated from the intestinal tract of a Chinese bushbrown butterfly (*Mycalesis gotama* Moore) at Seoul, Korea. Homogenized intestine tract tissue was serially diluted with filtered PBS buffer (Bioneer, Korea) and spread on trypticase soy agar (TSA; Bacto) plates. This plate was incubated at 25 °C for 1 week, and a pure culture was obtained by repeated cultivation of single colonies. All tests were conducted in triplicate. For the phylogenetic analysis, the 16S rRNA gene sequence of strain LEN33^T were amplified by colony PCR using PCR pre-mix (iNtRon Biotechnology) with two universal bacterial primers: forward primer 8F (5′-AGAGTTTGATCCTGGCTCAG-3′) and reverse primer 1492R (5′-GTTACCTTGTATCTGGAGCAG-3′) (Lane, 1991). Conditions for colony PCR were as follows: Initial denaturation at 94 °C for 30
min, followed by 30 cycles of denaturation at 94 °C for 1 min, annealing at 65 °C for 1 min and extension at 72 °C for 1 min 30 s, with a final extension step at 72 °C for 10 min. The 16S rRNA gene amplicon was sequenced using a BigDye Terminator Cycle Sequencing Ready Reaction kit (Applied Biosystems), according to the manufacturer’s instructions. The analysis was conducted using an automated system (PRISM 3730XL DNA analyser; Applied Biosystems). The almost complete 16S rRNA gene sequences of the isolate were assembled using SeqMan (DNASTAR). The assembled sequence was compared with other sequences of type strains in the EzTaxon-e server (Kim et al., 2012). The results of the 16S rRNA gene sequence similarity analysis showed that strain LEN33T was related to G. quercinecans FRB 97T (98.7 % similarity) and G. dentisursi NUM 1720T (98.7 % similarity). For detailed phylogenetic description, multilocus sequence analysis was performed. The protein-encoding genes gyrB (DNA gyrase subunit β) and rpoB (RNA polymerase subunit β) were amplified and sequenced, as described by Brady et al. (2008). The 16S rRNA gene and protein-encoding genes sequences of LEN33T and those of closely related species were aligned using the multiple alignment programme CLUSTAL W (Thompson et al., 1994). The aligned sequences were checked manually using BioEdit software (Hall, 1999). The phylogenetic trees based on the 16S rRNA, gyrB and rpoB gene sequences of strain LEN33T and its relatives were reconstructed using the MEGA5 software program (Tamura et al., 2011). Phylogenetic correlations were ascertained using neighbour-joining (Saitou & Nei, 1987), maximum-parsimony (Kluge & Farris, 1969) and maximum-likelihood (Felsenstein, 1981) methods with 1000 bootstrap replicates. The phylogenetic trees based on the 16S rRNA gene and protein-encoding genes sequences showed that the isolate formed a cluster with other members of the genus Gibbsiella (Fig. 1 and Fig. S1 available in IJSEM Online). In order to perform a more comprehensive characterization of strain

![Fig. 1. Phylogenetic tree based on 16S rRNA gene sequence comparisons, reconstructed using the neighbour-joining, maximum-parsimony and maximum-likelihood algorithms. Filled diamonds represent identical branches that are present in phylogenetic consensus trees reconstructed using the three different methods. Numbers at nodes indicate bootstrap values as percentages of 1000 replicates. Values lower than 70 % are not shown at the branch points. Bar, 0.005 accumulated changes per nucleotide.](image-url)
LEN33T, G. quercinecans FRB 97T (=LMG 25500T) was obtained from the Belgian Co-ordinated Collections of Microorganisms/Laboratorium voor Microbiologie, Universiteit Gent (BCCM/LMG).

Growth under anaerobic conditions was determined after 7 days of cultivation at 37 °C in an anaerobic chamber filled with an atmosphere composed of N₂:CO₂:H₂ at a ratio of 90:5:5. The growth test was performed at different temperatures (4, 15, 20, 25, 30, 37, 45, 55 and 65 °C) on trypticase soy broth (TSB; Bacto) in triplicate. Salt requirement and tolerance were tested under different concentrations of NaCl (0, 1, 2, 3, 4, 5, 8, 10, 12 and 15 %, w/v) in a medium that comprised all of the ingredients of TSB except NaCl. Growth at various pH (4.0–10.0 at intervals of 1.0 pH unit) was tested on TSB at 37 °C. The pH of each medium was adjusted with 50 mM MES for pH 4–6, 50 mM TAPS for pH 7 and 8 and 50 mM Na₂HPO₄ for pH 9 and 10. The OD₆₀₀ of each culture was measured using a spectrophotometer (SYNERGY MX; BioTek) after 24 h, 48 h and 7 days of incubation. These tests demonstrated that LEN33T grew at 4–37 °C in 0–5 % (w/v) NaCl at a pH 5–9. Optimal growth conditions for the isolate were 37 °C, a salinity of 1 % (w/v) NaCl and pH 8–9. Unless stated otherwise, all experiments were performed under optimal growth conditions for 48 h incubation time. Light microscopy was used to observe Gram-staining and cell morphology (ECLIPSE 50i; Nikon). Gram-staining was carried out with a Gram-staining kit (bioMérieux) according to the manufacturer’s instructions.

Motility tests were conducted in semi-solid TSA (containing 0.4 % agar) (Tittsler & Sandholzer, 1936). The isolate was Gram-negative, rod-shaped and non-motile. Strain LEN33T formed white–cream-coloured, circular, smooth and convex colonies after 24 h on TSA medium at 37 °C.

Catalase activity was identified by bubble production in 3 % (v/v) hydrogen peroxide. Oxidase activity was determined using 1 % (w/v) tetramethyl-p-phenylenediamine (bioMérieux). Enzyme activities of the isolate were ascertained using API ZYM test strips (bioMérieux) and API 20NE test strips (bioMérieux), according to the manufacturer’s instructions. Sole carbon source assimilation and acid production from carbohydrates were tested using GN2 MicroPlates (Biolog) with GN/GP inoculating fluid (Biolog) and API 50 CH and API 20NE test strips (bioMérieux) with 50 CHB/E medium (bioMérieux), respectively, according to the manufacturer’s instructions. The isolate differed from G. quercinecans FRB 97T by the ability to assimilate α-cyclodextrin, glycogen, N-acetyl-d-galactosamine, adonitol, i-erythritol, xylitol, acetic acid, formic acid, D-galactonic acid lactone, D-galacturonic acid, D-glucosaminic acid, D-glucuronic acid, α-hydroxybutyryl acid, α-ketoacrylic acid, glucuronamide, L-alanine, L-alanylglycine, L-glutamic acid, glycy1-L-glutamic acid, D-serine, uracanolic acid, thymidine and DL-α-glycerol phosphate (determined using GN2 MicroPlate); and enzyme activity level for cystine arylamidase (API ZYM). The complete results of biochemical tests and the

Table 1. Differential characteristics of strain LEN33T and the closest related species

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature optimum (°C)</td>
<td>37</td>
<td>30*</td>
</tr>
<tr>
<td>Assimilation of:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>α-Cyclodextrin, glycogen, N-acetyl-d-galactosamine, adonitol, i-erythritol, xylitol, acetic acid, formic acid, D-galactonic acid lactone, D-galacturonic acid, D-glucosaminic acid, D-glucuronic acid, α-hydroxybutyryl acid, α-ketoacrylic acid, glucuronamide, L-alanine, L-alanylglycine, L-glutamic acid, glycy1-L-glutamic acid, D-serine, uracanolic acid, thymidine, DL-α-glycerol phosphate</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>Acid production from:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lactose, inositol, starch, L-fucose</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>Enzyme activity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cystine arylamidase</td>
<td>+</td>
<td>–</td>
</tr>
</tbody>
</table>

*Data from Brady et al. (2010).
characteristics of strain LEN33^T that distinguish it from G. quercinecans FRB 97^T are presented in Table 1 and the species description.

Chemotaxonomic analyses were performed with the cell biomass of the isolate and the reference species cultured on TSA plates at 37 °C for 48 h, which were standardized as exponential phase of physiological ages in both species. The protocol of the Sherlock Microbial Identification Systems (MIDI, 1999) was followed to extract fatty acids. Fatty acid composition was analysed by gas chromatography (Agilent 7890 gas chromatograph, Agilent Technologies) and individual fatty acids were identified using the Microbial Identification software package (Sherlock version 4.0) (Sasser, 1990) in combination with the TSBA6 database. The most dominant fatty acids (>10%) were \(\text{C}_{16:0} \) (39.11%), cyclo-\(\text{C}_{17:0} \) (19.91%) and \(\text{C}_{14:0} \) (10.10%).

To identify the characteristic isoprenoid quinone of strain LEN33^T, the polar lipids of strain LEN33^T were extracted for genotype analyses, as described by Brady et al. (2010). To terminate plasmid contamination, the DNA G+C content was extracted for 56.0 to 58.7 mol% (Wayne et al., 1987).

The phenotypic, genotypic and phylogenetic analyses suggest that strain LEN33^T represents a novel species of the genus Gibbsiella, for which the name Gibbsiella papilionis sp. nov. is proposed.

Emended description of the genus Gibbsiella

The description of the genus Gibbsiella is based on that given previously by Brady et al. (2010), but with the following amendment. The DNA G+C content ranges from 56.0 to 58.7 mol%.

Description of Gibbsiella papilionis sp. nov.

Gibbsiella papilionis (pa.pi.li.o’nis. L. gen. n. papilionis of a butterfly, isolated from the intestinal tracts of a butterfly, Mycalesis gotama).

Facultatively anaerobic, Gram-negative, rod-shaped (1.5 μm long and 0.5 μm wide), non-motile, oxidase-negative and catalase-positive. Colonies on TSA medium are circular, opaque with a cream colour, smooth and convex. Growth occurs at temperatures between 4 and 37 °C, 0–5% (w/v) NaCl and pH 5–9. Optimal growth conditions are pH 8–9, in the presence of 1% (w/v) NaCl and at 37 °C. Acid is produced from glyceral, \(\text{D}-\text{arabinose}, \text{D}-\text{ribose}, \text{D}-\text{xyllose}, \text{D}-\text{galactose}, \text{D}-\text{glucose}, \text{D}-\text{fructose}, \text{L}-\text{mannose}, \text{L}-\text{sorbitose}, \text{L}-\text{rhamnose}, \text{L}-\text{mannitol}, \text{L}-\text{sorbitol}, \text{methyl-\text{L}-D-glucoside}, \text{N}-\text{acetylglucosamine}, \text{arbutin}, \text{aesculin}, \text{salicin}, \text{maltose}, \text{melibiose}, \text{sucrose}, \text{trehalose}, \text{raffinose}, \text{gentiobiose}, \text{turanose}, \text{glucuronate}, 2-\text{ketogluconate}, 5-\text{ketogluconate.}

The isolate assimilates \(\text{m}-\text{cyclodextrin}, \text{dextrin}, \text{glycogen}, \text{Tween 40}, \text{Tween 80}, \text{N}-\text{acetyl-D-galactosamine}, \text{N}-\text{acetyl-D-gluco-}

\text{amine, L-arabinose, D-arabitol, cellubiose, adonitol, L-erythritol, D-fructose, L-fucose, D-galactose, gentiobiose, \text{D}-\text{glucose}, \text{myo-inositol, L-lactose, lactulose, maltose, D-mannitol, D-mannose, melibiose, \text{D}-\text{myo-glycerol phosphate, D-psicose, raffinose, L-rhamnose, D-sorbitol, sucrose, trehalose, turanose, xylitol, pyruvic acid methyl ester, succinic acid mono-methyl-ester, acetic acid, cis-aconitic acid, citric acid, formic acid, D-galactonic acid lactone, D-galacturonic acid, D-gluconic acid, D-glucosaminic acid, D-glucuronic acid, D-hydroxybutyric acid, D-ketobutyric acid, D-ketoglutaric acid, D-lactic acid, succinic acid, bromosuccinic acid, succinamic acid, glucuronamide, L-alanine, L-alanylglucine, L-asparagine, L-aspartic acid, L-glutamic acid, glycyl-L-aspartic acid, glycyl-L-glutamic acid, D-serine, L-serine, \text{D}-\text{myo-glicerol phosphate, \text{D}-\text{glucose}-1-phosphate and D-glucose-6-phosphate. Positive for the following enzymes’.}

The description of the genus Gibbsiella is based on that given previously by Brady et al. (2010), but with the following amendment. The DNA G+C content ranges from 56.0 to 58.7 mol%.
activities: alkaline phosphatase, esterase (C4), leucine arylamidase, cystine arylamidase, acid phosphatase, naphthol-AS-BI-phosphohydrolase, α-galactosidase, β-galactosidase, α-glucosidase, β-glucosidase, N-acetyl-β-glucosaminidase (API ZYM), potassium nitrate (reduction to nitrates), l-arginine dihydrodure, urease, β-glucosidase (α-eculin hydrolysis) and β-galactosidase (ONPG hydrolysis) (API 20NE). The predominant quinone is Q-8 and minor quinone is MK-8(H4). The major cellular fatty acids are C14:0, C16:0 and cyclo-C17:0. The polar lipids comprise two unidentified lipids, three unidentified aminophospholipids, phosphatidyethanolamine and phosphatidylglycerol.

The type strain is LENS3T (=KACC 16707T=JCM 18389T), isolated from the intestinal tract of Chinese bushbrown (Mycalesis gotama Moore) at Seoul, Korea. The DNA G+C content of the type strain is 58.7 mol%.

Acknowledgements

We thank Dr J. P. Euzéby (École Nationale Vétérinaire, France) for etymological advice, Jaejoon Jung and Professor Woojun Park (Korea University, Korea) for MIDI analysis and Hae-Won Lee and Dr Seong Woon Roh (Jeju Center, Korea Basic Science Institute, Korea) for isoprenoid quinone analysis. This work was supported by grants from the National Research Foundation of Korea and the National Institute of Biological Resources (NIBR) Mid-Career Researcher Program (2011-0028854).

References

