Survey of 150 strains belonging to the *Mycobacterium terrae* complex and description of *Mycobacterium engbaekii* sp. nov., *Mycobacterium heraklionense* sp. nov. and *Mycobacterium longobardum* sp. nov.

Enrico Tortoli,1 Zoe Gitti,2 Hans-Peter Klenk,3 Stefania Lauria,4 Roberta Mannino,4 Paola Mantegani,1 Alessandro Mariottini5 and Ioannis Neonakis2

1Emerging Bacterial Pathogens Unit, San Raffaele Scientific Institute, Milan, Italy
2Department of Clinical Bacteriology, Parasitology, Zoonoses and Geographical Medicine, University Hospital of Heraklion, Heraklion, Greece
3DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
4Microbiology and Virology Laboratory, Careggi University Hospital, Florence, Italy
5Cytogenetics and Genetics Unit, Careggi University Hospital, Florence, Italy

A thorough phenotypic and genotypic analysis of 150 strains belonging to the *Mycobacterium terrae* complex resulted in the identification of a number of previously unreported sequevars (sqvs) within the species known to belong to the complex. For the species *Mycobacterium arupense*, three sqvs were detected in the 16S rRNA gene, six sqvs in the *hsp65* gene and 15 sqvs in the *rpoB* gene; in *Mycobacterium senuense* two sqvs were present in each of the three genetic regions; in *Mycobacterium kumamotonense* four, two and nine sqvs were found, respectively, and in *M. terrae* three, four and six sqvs were found, respectively. The inappropriate inclusion of *Mycobacterium triviale* within the *M. terrae* complex was confirmed. The limited utility of biochemical tests and of mycolic acid analyses for the differentiation of the members of *M. terrae* complex was also confirmed.

The survey allowed the recognition of three previously undescribed species that were characterized by unique sequences in the 16S rRNA, *hsp65* and *rpoB* genes. *Mycobacterium engbaekii* sp. nov. (proposed previously 40 years ago but never validly published) was characterized by pink photochromogenic pigmentation and rapid growth; phylogenetically it was related to *Mycobacterium hiberniae*. The type strain of this species, of which eight strains were investigated, is ATCC 27353^T^ (=DSM 45694^T^). A cluster of 24 strains was the basis for the description of *Mycobacterium heraklionense* sp. nov., which has an intermediate growth rate and is unpigmented; nitrate reductase activity is typically strong. Closely related to *M. arupense* with respect to the 16S rRNA gene, *M. heraklionense* sp. nov. could be clearly differentiated from the latter species in the other genetic regions investigated. The type strain is NCTC 13432^T^ (=LMG 24735^T^ = CECT 7509^T^).

Mycobacterium longobardum sp. nov. represented in the study by seven strains, was characterized by a unique phylogenetic location within the *M. terrae* complex, clearly divergent from any other species. The type strain is DSM 45394^T^ (=CCUG 58460^T^).

The *Mycobacterium terrae* complex (MTC) is a group within the genus *Mycobacterium* that was created in the 1970s to gather *Mycobacterium nonchromogenicum*, *Mycobacterium terrae* and *Mycobacterium triviale*, three species that could not be differentiated using the biochemical and cultural methods available at that time. *M. nonchromogenicum* described in 1965 (Tsukamura, 1965), *M. terrae* described in 1966 (Wayne, 1966) and *M. triviale* described in 1970 (Kubica et al., 1970) share

Abbreviations: MTC, *Mycobacterium terrae* complex; PRA, PCR restriction analysis; sqvs, sequevars.

The GenBank accession numbers of the almost complete 16S rRNA sequences for the type strains of *M. engbaekii* sp. nov., *M. heraklionense* sp. nov. and *M. longobardum* sp. nov. are AF480577, GU084182 and JN571166, respectively. Full details of the GenBank accession numbers determined for all the strains in this study are available as a supplementary table.

Two supplementary figures and six supplementary tables are available with the online version of this paper.

The International Journal of Systematic and Evolutionary Microbiology (2013), 63, 401–411

DOI 10.1099/ijs.0.038737-0

038737 © 2013 IUMS Printed in Great Britain
important cultural features including intermediate growth rate (from 5 to 15 days are required for the development of clearly visible colonies from diluted inocula on solid media) and lack of pigmentation.

In the early 1990s, the detection of a unique genetic signature: the presence of a two-nucleotide insertion in helix 18 of the 16S rRNA gene (Kirschner et al., 1993; Springer et al., 1996), in comparison with other slow-growing mycobacteria, confirmed the consistence of the MTC. This signature still remains the most reliable marker for the attribution of mycobacteria to the MTC. At the same time, the presence, in M. triviale, as also seen in rapid growers, of a helix 18 that is 14 nt shorter, unquestionably demonstrated the unrelatedness of this species to the complex.

A gap of more than 20 years separates the recognition of the original members of the MTC from the description of a novel species related to this group, Mycobacterium hiberniae (Kazda et al., 1993). This novel mycobacterium is characterized by a unique phenotypic feature, the pink pigmentation of the colonies, but the major role in its differentiation was played by the genetic analysis that was, at that time, beginning to emerge. The boom years of the MTC start however in 2006 with the description of three novel species Mycobacterium kumamotonense, Mycobacterium senuense and Mycobacterium arupense (Cloud et al., 2006; Masaki et al., 2006; Mun et al., 2008).

Identification at species level within the members of the MTC still remains problematic as well as biochemical and cultural tests (Wayne & Kubica, 1986), the analysis of cell-wall lipids is poorly discriminative. More recently, DNA probes specific for the species of the MTC have not been introduced by any of the commercial hybridization kits; probably as a consequence of the limited interest aroused by organisms that have been grossly labelled as non-pathogenic. Unexpectedly, even their identification by means of genetic sequencing remains elusive as hundreds of sequences related to members of the MTC are stored in public domain databases without any, or with unreliable, species allocations.

The aim of this study was to investigate the phylogenetic and taxonomic structure of the MTC with a large number of isolates and to make a panel of species-specific genetic sequences characterized by unambiguous labels available in GenBank.

METHODS

Strains. For this study, all the strains assigned to the MTC on the basis of routine identifications performed in our laboratory from 1996 onwards were investigated. All such strains (a total of 156) had been grown from clinical specimens and stored at −80 °C. While the large majority of them were isolated either in Careggi Hospital laboratory or in other Italian hospitals, 27 strains were obtained from laboratories of other countries. After thawing, each strain was grown on Middlebrook 7H11 medium at 37 °C. The reference strain of ‘M. engbaeki’ (ATCC 27353) and type strains of M. hiberniae (ATCC 49874), Mycobacterium kumamotonense (DSM 45093T), Mycobacterium senuense (DSM 44999T) and M. terrae (CIP 104321T) were also included in the study; other reference strains investigated were M. nonchromogenicum (PI140330001) and M. triviale (P1141030004).

Genetic sequencing. Three different regions were chosen for genetic characterization: the genes coding for the 16S rRNA, for the 65 kDa heat shock protein (hsp65) and for the β-subunit of the RNA polymerase (rpoB). For the 16S rRNA gene, a region spanning 479 bp was sequenced starting from the position corresponding to Escherichia coli position 28, according to a previously reported procedure (Reischl et al., 1998). The almost complete 16S rRNA gene sequences were determined for the strains which are proposed as representing novel species in this study. A stretch of 399 bp was sequenced in the hypervariable region of the hsp65 gene (McNab et al., 2004) starting from the position corresponding to Mycobacterium tuberculosis position 443. For the rpoB gene, the stretch recently proposed for the differentiation of rapidly growing mycobacteria (Adékambi et al., 2003) was investigated; the length of the nucleotide sequence (starting at the position corresponding to Mycobacterium smegmatis position 2554) ranged from 711 to 726 bp in different strains. In all the regions above, both the forward and reverse strands were determined using Big Dye terminator chemistry and an AB3730 DNA sequencer (Applied Biosystems).

For the designation of sequevars (sqvs) for which assignation to a species was possible, the first three letters (capitalized) of the species name were used followed, for the 16S rRNA gene, by a small letter (a, b, . . .), for hsp65, by a number (1, 2, . . .) and, for rpoB, by a Roman numeral (i, ii, . . .).

Sequences of protein-coding genes (hsp65, 133 codons; rpoB, 237–242 codons) were also translated to the amino acid residue compositions to distinguish silent mutations from ones affecting protein structure.

Phylogenetic analysis. The phylogenetic analysis was conducted according to the neighbour-joining method (Saitou & Nei, 1987) under the total gap removal and Kimura’s two-parameter substitution model (Kimura, 1980), and was evaluated by bootstrap analysis based on 1000 replicates using MEGA software version 5 (Tamura et al., 2011). The trees were rooted using M. tuberculosis as the outgroup. Sequences for M. tuberculosis retrieved from GenBank had been added previously to various alignments.

The phylogenetic reconstruction based on 16S rRNA gene sequences included 22 different sqvs detected among the strains investigated in this study. The sequences, downloaded from GenBank, of the most closely related slowly and rapidly growing mycobacteria were also added.

To improve the robustness of the tree (Devulder et al., 2005; Mignard & Flandrois, 2008; Stackebrandt et al., 2002), the sequences of the three genetic regions were concatenated in a single filament including a number of nucleotides ranging, in different strains, from 1589 to 1604 (16S rRNA, 479; hsp65, 399; rpoB, 711–726). In the investigation using the concatenated sequences, all the combinations (75 in total) of 16S rRNA, hsp65 and rpoB sqvs detected in our strains were included.

Lipid investigations. HPLC of cell-wall mycolic acids was carried out on all the strains after esterification to bromophenacyl esters as described previously (CDC, 1996).

Biochemical and cultural tests. For all the strains, nitrate reduction, growth rate and pigmentation of colonies were investigated. For the strains considered to represent novel species, a number of randomly selected strains (10 of M. heraclinense sp. nov., five of M. engbaeki sp. nov. and two of M. longobardum sp. nov.) were investigated with a wider panel of tests according to standard procedures (Kent & Kubica, 1985).
Susceptibility testing. Susceptibility testing was performed on randomly selected strains belonging to the novel species proposed here (four of *M. herakliense* sp. nov., four of *M. engebakii* sp. nov. and two of *M. longobardum* sp. nov.). The MICs of drugs selected for their activity on slowly growing mycobacteria were determined using commercially available microdilution plates (SLOMYCO, VersaTREK) following the Clinical and Laboratory Standards Institute (CLSI) recommendations (CLSI, 2011).

RESULTS

Genetic sequencing

The alignment of the 22 sqvs detected in the 16S rRNA gene of the 156 strains investigated added to the existing evidence that *M. triviale* does not belong to the MTC. Helix 18 of the 16S rRNA gene was in fact, 14 nt shorter in the six strains of *M. triviale* present in our panel than in the remaining strains. Such a feature not only excludes *M. triviale* from the MTC, but even places this species within the group of rapid growers. These six strains were therefore excluded from the study.

Six of the 21 remaining 16S rRNA gene sqvs turned out to overlap the sequences of the type strains of the six species known to belong to the MTC and this allowed them to be assigned to *M. arupense*, *M. nonchromogenicum*, *M. hiberniae*, *M. senuense*, *M. terrae* and *M. kumamotonense*. Another sequevar was 100% identical to the sequence of ‘*Mycobacterium engebakii*’. Only nine of the remaining 16 sqvs were found in the GenBank database, five of them had been previously deposited by one of the authors of this study, while the species assignation of two others was either lacking or incorrect. The pairwise matrix of distances (Table S1 available at IJSEM online) allowed the identification of four clusters of sqvs which were assigned to the species *M. arupense*, *M. senuense*, *M. kumamotonense* and *M. terrae* on the basis of the inclusion of the sequences of the respective type strains. Within such clusters the intraspecies variability was <1%. One sequevar shared by two strains (FI-07105/FI-11038) differed by only one nucleotide from ‘*Mycobacterium engebakii*’ (Lee et al., 2010). The three remaining sqvs (NEW1, GN-9188, FI-09379), differed from all type strains and did not fit any cluster.

A total of 30 sqvs were found in the *hsp65* gene. With the similarity matrix (Table S2), eight clusters were recognized in this region, which were characterized by pairwise distances <3% (with three exceptions with values up to 3.36%). Five clusters were immediately attributed to the species *M. arupense*, *M. senuense*, *M. kumamotonense*, *M. terrae* and *M. engebakii*, because of the inclusion of the sequences of the respective type strains; they all were detected in strains assigned to the same species on the basis of the 16S rRNA gene sequence. One of the remaining clusters (NEW2, including two sqvs), although clearly separated from the cluster of *M. arupense*, had been detected in strains assigned, on the basis of 16S rRNA gene sequences, to the latter species. The other two clusters (NEW3 and NEW4) included two and three orphan (unassigned to any known species) sqvs, respectively. Interestingly two (FI-07105 and FI-11038) of the three sqvs included in NEW4 belonged to the strains showing close similarity with *M. paraterrae* in 16S rRNA gene sequences, but clearly differed from the latter in the *hsp65* gene region. In the species *M. nonchromogenicum* and *M. hiberniae*, one single sequevar was present. Three sqvs (NEW1, GN-9188 and FI-05196) differed from all type strains and did not fit any of the clusters above. Interestingly, the sequevar NEW1 was detected in the strains classified as NEW1 also on the basis of the 16S rRNA gene sequence.

As expected, large variability was detected in the *rpoB* gene fragment, with the presence of 58 sqvs. The pairwise matrix of distances (data not shown) included ten clusters with, in the large majority of cases, internal variability below the limit (3%) proposed for the *rpoB* region (Adékambi & Drancourt, 2004) (there were five exceptions with values up to 5.3%). For this gene, the presence in GenBank of only one MTC sequence overlapping to ours (and furthermore not assigned to any known species), did not allow us to attribute any sequevar to a species; the attribution was therefore inferred from that achieved on the basis of the 16S rRNA and *hsp65* sqvs for each strain. Following this approach, it was possible to classify one cluster within each of the species: *M. arupense* (10 sqvs), *M. nonchromogenicum* (five sqvs), ‘*M. engebakii*’ (four sqvs), *M. senuense* (two sqvs), *M. kumamotonense* (nine sqvs) and *M. terrae* (six sqvs). Of the remaining four clusters, one (NEW1, with two sqvs) was detected in strains classified as NEW1 on the basis of 16S RNA and *hsp65* gene sequences; and one (NEW2, with seven sqvs) was detected in strains classified as NEW2 on the basis of *hsp65* gene sequences). One cluster (NEW5, with three sqvs) was detected in strains assigned to the species *M. arupense* on the basis of 16S rRNA and *hsp65* gene sequences, it was however very distant from the *rpoB* sqvs of the strains presenting in the 16S rRNA and *hsp65*, the typical sqvs of this species. The last cluster (NEW6, with two sqvs) remained orphan. The sqvs FI-06258, FI-07105/FI-09015/FI-09379, FI-09379, FI-05396/FI-06246/FI-05196 and FI-11038 did not fit any cluster. Interestingly the five cases in which the intraspecies variability exceeded 3% were detected within the cluster of *M. terrae* where the sequevar obtained from the type strain (CIP 104321) clearly differed from all the others.

Of the sqvs detected, apart from the ones of the type strains and the ones previously deposited by some of the authors, only a limited number were already present in GenBank. As regards the 16S rRNA gene, two of the five sequevars present were not assigned to any species while the label of the remaining three was correct in two cases and incorrect in one. Concerning *hsp65* gene, there were three sqvs correctly assigned, two lacking any species attribution and three that were mislabelled; furthermore, in this region, our sequence of the type strain of *M. senuense* presented one mismatch in comparison with the one present in the database. For *rpoB* sqvs, only two, both assigned to the
species *M. terrae*, were present in GenBank although not identified. In this region, one type strain (*M. terrae*) presented one nucleotide discordance.

The combinations of the 16S rRNA, *hsp65* and *rpoB* sqvs detected in the strains investigated here are reported in Table S3.

Phylogenetic analysis

The tree constructed using the sequences of the 16S rRNA genes revealed a clear separation of the strains included in the MTC from both the slow- and the rapid-growers (Fig. 1). The strains investigated here were distributed among two major branches including in the first *M. senuense*, *M. terrae* and *M. kumamotonense* and in the second *M. arupense*, *M. nonchromogenicum*, *M. hiberniae*, *M. engbaekii* and the clusters NEW1 and NEW2. The branch including *M. triviale* appeared very distant from the species of the MTC.

The phylogenetic tree inferred from *hsp65* gene sequences was fully in agreement with the one obtained from 16S rRNA gene sequences (Fig. S1), while a polyphyletic distribution of different species emerged (Fig. S2) in the tree constructed based on the *rpoB* gene sequences.

The phylogenetic analysis conducted on the concatenated sequences of the 75 different combinations detected in the 137 MTC strains that it was possible to assign to a species produced a quite robust dendrogram characterized by a high percentage of nodes, including the early ones, with very high bootstrap values (Fig. 2). Different species-specific clusters were clearly separated although belonging to two major groupings: the first including *M. arupense*, NEW2, *M. nonchromogenicum*, *M. hiberniae*, *M. engbaekii* and NEW1; the second comprising *M. senuense*, *M. terrae* and *M. kumamotonense*.

The analysis of translated nucleotide sequences revealed a large number of synonymous mutations with, in the *hsp65* region, only 12 different amino acid sequences being coded by 31 different sqvs and, in the *rpoB* region, only 27 different amino acid sequences being coded by 59 sqvs.

HPLC of cell-wall mycolic acids

The HPLC of cell-wall mycolic acids performed on the whole initial group of 156 strains revealed two different types of pattern (Fig. 3). The motif shared by the large majority of the strains was characterized by the presence of two, clearly distinct, clusters of peaks, with the first one, including three major peaks, starting to elute after 3 min and the second, including three minor peaks, eluting about 3 min later. The other pattern was presented only by the six strains of *M. triviale* subsequently excluded from the study; in this species only a late emerging cluster of peaks was present (Fig. 3d).

Fig. 1. Phylogenetic tree based on 16S rRNA sequences constructed using the neighbour-joining method (bootstrapped 1000 times). Bootstrap values >50% are given at nodes. Bar, 0.005 substitutions per nucleotide position.
Fig. 2. Phylogenetic tree based on concatenated 16S rRNA, hsp65 and rpoB gene sequences constructed using the neighbour-joining method. Every combination of sequvars detected in the strains investigated was included. The bootstrap was replicated 1000 times; only values >50% are given at nodes. Bar, 0.01 substitutions per nucleotide position.
Because of the common motif shared by all the members of the MTC with only a limited variability in the relative height in the major peaks of the first cluster, we tried to correlate these profiles with the different species. If the lower peaks were not taken into account, almost all the strains presented three major peaks in the first clusters. The most common motif was characterized by a highest central peak followed by the first and the third in decreasing order (Fig. 3a). This pattern was presented by the strains belonging to the species *M. nonchromogenicum* and to the NEW1 group. It was also shared by 70 % of the strains of *M. arupense* and was also represented in about half of the strains of ‘*M. engbaekii*’ and of the NEW2 group. Less frequent, but scattered among various groupings, was the motif in which the third peak was higher than the first, with the second being the highest. Unique to the species *M. kumamotonense*, although not shown by all such strains, was a pattern characterized by three almost equal peaks with the height slightly rising from the first to the third (Fig. 3b). Equally unique to the species *M. terrae* was the profile presenting four major peaks instead of three in the first cluster (Fig. 3c).

Biochemical and cultural tests

The nitrate test was selected as the ability to reduce nitrate to nitrite is considered the sole classical biochemical feature suitable for discrimination within the otherwise phenotypically homogeneous species of the MTC (Wayne & Kubica, 1986). Nitrate reductase activity was shown by strains of *M. kumamotonense*; it was absent in strains of *M. arupense* and *M. terrae* (Table S4).

Colonies of the strains investigated were buff coloured and predominantly smooth; exceptions were shown by *M. hiberniae* and ‘*M. engbaekii*’ which featured pink pigmentation (Table S4).

At 37 °C, growth on solid media from standardized inocula became distinctly visible, on average, after 7–14 days; faster growth was occasionally observed, while *M. senuense* grew typically slowly (Table S4).

DISCUSSION

Several obvious conclusions seem to emerge from the results of the genotypic and phenotypic investigations carried on a large number of strains belonging to the MTC.

(i) The legitimacy of the currently officially recognized species of the MTC is clearly confirmed.

(ii) The group we temporarily named NEW1 includes strains that are clearly different from any other species of the MTC in all the three genetic regions investigated. This group (of which seven strains were characterized in this study), is suggested as representing a novel species for which the name *Mycobacterium longobardum* sp. nov. is proposed.

(iii) The strains included so far in the NEW2 group, which had been initially assigned to the species *M. arupense* on the basis of the analysis of the 16S rRNA sequence, are...
actually clearly distant from the latter in the hsp65 and rpoB regions and represent a previously unreported species for which the name Mycobacterium heraklionense sp. nov. is proposed. Twenty three strains of this novel species were characterized in this study.

(iv) The seven strains investigated here and assigned to 'M. engbaekii' support the formal proposal of M. engbaekii sp. nov. The name 'M. engbaekii' was proposed in 1972 for 15 rapidly growing strains showing pink pigmentation (Korsak & Boisvert, 1972); although a reference strain of 'M. engbaekii' was deposited in the American Type Culture Collection, no formal species description followed and the name was not validly published.

(v) Within the species M. arupense, two variants can be clearly distinguished on the basis of the rpoB gene sequence. Sufficient evidence has not emerged so far to justify the elevation of this new variant (indicated in this study as NEW6) to species rank, despite the divergence in the rpoB gene region that was clearly above proposed cut-off values.

(vi) Surprisingly, the recently described species M. arupense and M. kumamotonense are by far the most frequently isolated members of the MTC. One of the reference strains investigated here (M. nonchromogenicum P1140330001) turned out to be a member of M. arupense, which supports the hypothesis that the latter species and M. kumamotonense have been identified in the past (and also in the present) as M. nonchromogenicum and M. terrae, respectively. In our study, the isolations of M. nonchromogenicum and M. terrae were not as frequent as generally acknowledged. This brings up for discussion the widespread conviction that M. nonchromogenicum is the only member of the MTC potentially responsible for disease (Tsuchamura et al., 1983).

(vii) A number of strains have been detected that show, within 16S rRNA, hsp65 and rpoB gene sequences, either conflicting sqvs of MTC species (three cases) or unreported sqvs that are not related to other, official or proposed, MTC species (10 cases; data not shown). Such strains (Table S5) need further characterization and have not been included in these phylogenetic investigations.

(viii) Questions are raised by the type strain of M. terrae. While the 16S rRNA gene sequence clusters with those of a number of other strains (Table S1), it clearly diverges from the latter in the hsp65 gene (Table S2) and, even more evidently, in the rpoB gene. A question remains thus far unanswered. Is the type strain of M. terrae a rare organism that is poorly representative of the species? Are the other strains assigned here to M. terrae actually members of an as yet undescribed novel species? The latter option would imply that M. terrae is so rare that not a single isolate of this species was detected in our long-term study.

(ix) A hoary, unresolved, problem is that of the advisability of describing a novel species based on a single isolate. It is not our aim to deal with this topic here; nevertheless in this study, a dozen unique strains emerged as potentially exploitable for the description of the same number of novel species!

Bacterial strains

Seven strains of M. longobardum sp. nov. were isolated from two Italian hospitals between 2006 and 2009 from the sputum samples of one Lebanese and six Italian patients. Microscopy was negative and growth was obtained on solid media only (despite in four cases liquid media having also been inoculated). In no case was the strain considered responsible for disease.

A total of 23 strains of M. heraklionense sp. nov. were isolated from Greece (10 strains), Italy (7) and India (6). The Greek strains were grown from one outpatient and nine hospitalized patients on the island of Crete between 2002 and 2003. The Italian strains were isolated between 2005 and 2011 in five different hospitals. No information is available for the Indian strains except that they were isolated before 2005.

Of the seven strains of M. engbaekii sp. nov., six had been isolated in Italy, in three different hospitals between 1998 and 2011, and one had been isolated in Guadeloupe.

Clinical and epidemiological information available for some of the strains mentioned above are reported in Table 1.

Genetic sequences

In the 16S rRNA gene sequences, M. arupense was the recognized species most closely related to M. longobardum sp. nov.; however 25 bp out of 1488 bp differed (similarity 98.3 %). M. longobardum sp. nov. showed the closest resemblance in the hsp65 gene (11 mismatches in 399 bp, similarity 97.2 %) with M. kumamotonense sp. nov.

As far as M. heraklionense sp. nov. is concerned, it was characterized by high similarity with M. arupense both in the 16S rRNA (only seven discrepancies out of 1427 bp, similarity 99.5 %) and in the hsp65 genes (99.2 % similarity, three mismatches out of 399 bp).

For the three proposed novel mycobacteria, the species most closely related on the basis of the rpoB gene sequence still showed very low similarity (<94 %); this value is however affected by the limited coverage of the GenBank database for this genetic region. The comparison of their sequences with those determined in this study for the species belonging to the MTC revealed, for each of them, a clear divergence from the most closely related species; M. heraklionense sp. nov. differed by 2.9 % from M. nonchromogenicum; M. longobardum sp. nov. differed by 3.6 % from M. heraklionense sp. nov. and M. engbaekii sp. nov. differed by 4.2 % from M. heraklionense sp. nov.

PCR restriction analysis (PRA)

PRA patterns (Telenti et al., 1993) inferred on the basis of restriction sites present in the hsp65 gene sequences were different for each of the three potential novel species (Table 2); two biotypes were detected for M. engbaekii sp. nov. The PRA patterns were unique and suitable for the differentiation

http://ijs.sgmjournals.org
Table 1. Epidemiological, microbiological and clinical characteristics of six strains of *M. engbaekii* sp. nov., 16 strains of *M. heraklionense* sp. nov. and seven strains of *M. longobardum* sp. nov. –, Negative; NA, no data available.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Age</th>
<th>Sex</th>
<th>Specimen type</th>
<th>Microscopy</th>
<th>Culture (positive/done)</th>
<th>Disease</th>
<th>Site*</th>
<th>Year</th>
<th>Sequevars (16S rRNA/hsp65/rpoB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. engbaekii sp. nov.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FI-04007</td>
<td>74</td>
<td>M</td>
<td>Gastric washing</td>
<td>–</td>
<td>NA</td>
<td>Renal failure, heart failure</td>
<td>GL</td>
<td>1998</td>
<td>a/2/iii</td>
</tr>
<tr>
<td>FI-98002</td>
<td>NA</td>
<td>M</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>MI</td>
<td>1998</td>
<td>a/1/i</td>
<td></td>
</tr>
<tr>
<td>FI-06007</td>
<td>62</td>
<td>M</td>
<td>Urine</td>
<td>–</td>
<td>1/3</td>
<td>VI</td>
<td>2006</td>
<td>a/3/iii</td>
<td></td>
</tr>
<tr>
<td>FI-98058</td>
<td>NA</td>
<td>M</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>TR</td>
<td>1998</td>
<td>a/1/i</td>
<td></td>
</tr>
<tr>
<td>FI-98001</td>
<td>NA</td>
<td>M</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>MI</td>
<td>1998</td>
<td>a/1/iv</td>
<td></td>
</tr>
<tr>
<td>HSR-11012</td>
<td>75</td>
<td>M</td>
<td>Bronchial aspirate</td>
<td>–</td>
<td>1/1</td>
<td>NA</td>
<td>VI</td>
<td>2011</td>
<td>a/1/i</td>
</tr>
<tr>
<td>M. heraklionense sp. nov.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GN01</td>
<td>74</td>
<td>M</td>
<td>NA</td>
<td>–</td>
<td>1/1</td>
<td>Renal failure, heart failure, Myelodysplastic syndrome</td>
<td>H</td>
<td>2002</td>
<td>a/2/iii</td>
</tr>
<tr>
<td>GN02</td>
<td>76</td>
<td>M</td>
<td>NA</td>
<td>–</td>
<td>1/1</td>
<td>COPD†</td>
<td>H</td>
<td>2003</td>
<td>a/2/ii</td>
</tr>
<tr>
<td>GN04</td>
<td>83</td>
<td>M</td>
<td>NA</td>
<td>–</td>
<td>1/1</td>
<td>Lung cancer</td>
<td>H</td>
<td>2003</td>
<td>a/2/ii</td>
</tr>
<tr>
<td>GN05</td>
<td>42</td>
<td>M</td>
<td>NA</td>
<td>–</td>
<td>1/1</td>
<td>Non-Hodgkin lymphoma</td>
<td>H</td>
<td>2003</td>
<td>a/2/ii</td>
</tr>
<tr>
<td>GN06</td>
<td>70</td>
<td>M</td>
<td>NA</td>
<td>–</td>
<td>1/1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GN08</td>
<td>59</td>
<td>M</td>
<td>NA</td>
<td>–</td>
<td>1/1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GN09</td>
<td>35</td>
<td>M</td>
<td>NA</td>
<td>–</td>
<td>1/1</td>
<td>Rheumatoid arthritis</td>
<td>H</td>
<td>2003</td>
<td>a/2/ii</td>
</tr>
<tr>
<td>GN10</td>
<td>82</td>
<td>M</td>
<td>NA</td>
<td>–</td>
<td>1/1</td>
<td>Pulmonary fibrosis</td>
<td>H</td>
<td>2003</td>
<td>a/2/ii</td>
</tr>
<tr>
<td>GN12</td>
<td>77</td>
<td>M</td>
<td>NA</td>
<td>–</td>
<td>1/1</td>
<td>Lung cancer</td>
<td>H</td>
<td>2003</td>
<td>a/2/ii</td>
</tr>
<tr>
<td>FI-10248</td>
<td>61</td>
<td>M</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>AN</td>
<td>2010</td>
<td>a/1/i</td>
<td></td>
</tr>
<tr>
<td>HRS-11013</td>
<td>82</td>
<td>M</td>
<td>Bronchial lavage</td>
<td>–</td>
<td>1/2</td>
<td>Pulmonary fibrosis</td>
<td>H</td>
<td>2003</td>
<td>a/2/ii</td>
</tr>
<tr>
<td>FI-06009</td>
<td>62</td>
<td>M</td>
<td>Sputum</td>
<td>–</td>
<td>1/3</td>
<td></td>
<td>NO</td>
<td>2011</td>
<td>a/1/i</td>
</tr>
<tr>
<td>FI-06255</td>
<td>NA</td>
<td>F</td>
<td>Sputum</td>
<td>NA</td>
<td>NA</td>
<td>Coal</td>
<td>2006</td>
<td>a/1/i</td>
<td></td>
</tr>
<tr>
<td>FI-08098</td>
<td>NA</td>
<td>M</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>MI</td>
<td>2008</td>
<td>a/1/i</td>
<td></td>
</tr>
<tr>
<td>FI-08101</td>
<td>NA</td>
<td>M</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>MI</td>
<td>2008</td>
<td>a/1/i</td>
<td></td>
</tr>
<tr>
<td>FI-05158</td>
<td>74</td>
<td>F</td>
<td>Sputum</td>
<td>–</td>
<td>1/2</td>
<td></td>
<td>NO</td>
<td>2005</td>
<td>a/1/i</td>
</tr>
<tr>
<td>M. longobardum sp. nov.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FI-09110</td>
<td>71</td>
<td>M</td>
<td>NA</td>
<td>–</td>
<td>1/2‡</td>
<td>Tuberculosis</td>
<td>VA</td>
<td>2009</td>
<td>a/1/i</td>
</tr>
<tr>
<td>FI-07054</td>
<td>65</td>
<td>M</td>
<td>NA</td>
<td>–</td>
<td>1/3‡</td>
<td>COPD†</td>
<td>VA</td>
<td>2006</td>
<td>a/1/i</td>
</tr>
<tr>
<td>FI-06254</td>
<td>78</td>
<td>M</td>
<td>NA</td>
<td>–</td>
<td>1/1§</td>
<td>Pneumonia</td>
<td>VA</td>
<td>2006</td>
<td>a/1/i</td>
</tr>
<tr>
<td>FI-09059</td>
<td>51</td>
<td>M</td>
<td>NA</td>
<td>–</td>
<td>1/9§</td>
<td>Bronchitis</td>
<td>VA</td>
<td>2008</td>
<td>a/1/i</td>
</tr>
<tr>
<td>FI-07034†</td>
<td>72</td>
<td>F</td>
<td>NA</td>
<td>–</td>
<td>1/4</td>
<td>Broncho-pneumonitis</td>
<td>VA1</td>
<td>2006</td>
<td>a/1/i</td>
</tr>
<tr>
<td>FI-07020</td>
<td>76</td>
<td>M</td>
<td>NA</td>
<td>–</td>
<td>1/2</td>
<td>Lung cancer</td>
<td>VA1</td>
<td>2006</td>
<td>a/1/i</td>
</tr>
<tr>
<td>FI-07089</td>
<td>39</td>
<td>F</td>
<td>NA</td>
<td>–</td>
<td>2/3§</td>
<td>Suspected tuberculosis</td>
<td>VA1</td>
<td>2006</td>
<td>a/1/i</td>
</tr>
</tbody>
</table>

*H, Greece (Heraklion); GL, Guadeloupe; other acronyms refer to different Italian cities.
†Chronic obstructive pulmonary disease.
‡Positive in liquid medium, but negative in solid medium.
§Systemic lupus erythematosus.

of *M. engbaekii* sp. nov., *M. heraklionense* sp. nov. and *M. longobardum* sp. nov. from any other known species of the genus *Mycobacterium* (http://app.chuv.ch/prasite/).

Phylogenetic analysis

In the phylogenetic reconstructions based on 16S rRNA, hsp65 and rpoB gene sequences, the three novel species proposed belonged to a sub-branch of the MTC that also included *M. arupense*, *M. nonchromogenicum* and *M. hiberniae*, with *M. kumamotonense*, *M. senuense* and *M. terrae* located on a different branch. The tree emerging from the concatenated sequences clearly showed *M. longobardum* sp. nov. separated from the other species; *M. heraklionense* sp. nov. closer to *M. nonchromogenicum* and *M. engbaekii* sp. nov. closer to *M. hiberniae* (Fig. 2).

HPLC of cell-wall mycolic acids

The low discriminating power, within the MTC, of the HPLC of cell-wall mycolic acids was also confirmed by the strains belonging to the species *M. engbaekii* sp. nov., *M.
Table 2. Patterns detected by PCR restriction analysis with enzymes BstEII and HaeIII for the strains for which novel species status is proposed

<table>
<thead>
<tr>
<th>Species</th>
<th>Sequevar</th>
<th>Restriction patterns</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>BstEII</td>
</tr>
<tr>
<td>Mycobacterium engbaekii sp. nov.</td>
<td>ENG1</td>
<td>289-96</td>
</tr>
<tr>
<td></td>
<td>ENG2-3-4</td>
<td>304-96</td>
</tr>
<tr>
<td>Mycobacterium heraklionense sp. nov.</td>
<td>HER1-2</td>
<td>210-96-94</td>
</tr>
<tr>
<td>Mycobacterium longobardum sp. nov.</td>
<td>LON1</td>
<td>210-190</td>
</tr>
</tbody>
</table>

heraklionense sp. nov. and *M. longobardum* sp. nov. which presented the typical profile that was characterized by an early major and a late minor clusters of peaks (Fig. 3).

Biochemical and cultural tests and susceptibility testing

The major differences, revealed by biochemical and cultural tests (Table 3) between the three novel species, concerned the morphology and pigmentation of the colonies (rough, pink, scotochromogenic in *M. engbaekii* sp. nov., rough and unpigmented in *M. longobardum* sp. nov. and smooth and unpigmented in *M. heraklionense* sp. nov.), the hydrolysis of Tween 80 (negative for *M. longobardum* sp. nov. only), nitrate reduction (negative in *M. engbaekii* sp. nov. only), arylsulfatase activity at three days (positive in *M. longobardum* sp. nov. only) and the β-glucosidase activity (positive in *M. heraklionense* sp. nov. only). With respect to other known members of the MTC, the discriminative power of biochemical and cultural tests was, as expected, very limited (data not shown) and confirmed the perception which lead to the proposal about 40 years ago that they should be included in a complex.

Antibiotic susceptibility testing revealed that the three novel species were susceptible to clarithromycin and resistant to quinolones with the activity of other molecules being variable (Table 4).

Description of *Mycobacterium engbaekii* sp. nov.

_Mycobacterium engbaekii* sp. nov. (eng.ba.e’ki.i. N.L. gen. masc. n. engbaekii of Engbaek, to honour of the Danish mycobacteriologist H. C. Engbaek).

Cells are typically acid–fast, rod-shaped, with some coccoid forms, but without branches or aerial hyphae; spores are not produced. Mature growth is obtained in solid media at temperatures between 25°C and 37°C in less than 10 days. Colonies grow as rough and unpigmented in the dark but develop a pink pigmentation after exposure to light. Gives a positive result for Tween 80 hydrolysis and tellurite reduction, and is negative in tests for niacin accumulation, arylsulfatase at 3 days, nitrate reduction, and urease and β-glucosidase activities. Catalase at 68°C is present and more than 45 mm foam is produced in the semiquantitative test.

<table>
<thead>
<tr>
<th>Table 3. Results of biochemical and cultural tests for the three proposed novel species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Characteristic</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Growth rate</td>
</tr>
<tr>
<td>Growth at 45°C</td>
</tr>
<tr>
<td>Pigmentation</td>
</tr>
<tr>
<td>Colony morphology</td>
</tr>
<tr>
<td>Nitrate reduction</td>
</tr>
<tr>
<td>Tween 80 hydrolysis</td>
</tr>
<tr>
<td>Tellurite reduction</td>
</tr>
<tr>
<td>Arylsulfatase 3 day</td>
</tr>
<tr>
<td>β-Glucosidase</td>
</tr>
<tr>
<td>Tolerance of</td>
</tr>
<tr>
<td>MacConkey medium</td>
</tr>
<tr>
<td>Hydroxylamine</td>
</tr>
<tr>
<td>Oleate</td>
</tr>
</tbody>
</table>

*Photochromogenic.

Isolates are susceptible to amikacin, clarithromycin, ethambutol, linezolid and rifabutin and resistant to doxycycline and sulfamethoxazole. Mycolic acids produce an early major and a late minor cluster of peaks. The sequences are unique in the 16S rRNA gene, in the *hsp65* gene (where four sqvs are present) and in the *rpoB* (four sqvs) gene. Phylogenetically the species is included in the MTC and is most closely related to *M. hiberniae*.

The type strain is ATCC 27353T=DSM 45694T.

Description of *Mycobacterium heraklionense* sp. nov.

_Mycobacterium heraklionense* sp. nov. (he.ra.kli.on.en’se. N.L. neut. adj. heraklionense of or belonging to Heraklion, the city in Crete where many strains were isolated).

Cells are typically acid–fast, rod-shaped, with some coccoid forms, but without branches or aerial hyphae; spores are not produced. Mature growth is obtained in solid media at temperatures between 25°C and 37°C in 5–12 days. Colonies grow as smooth and unpigmented both in the dark and after light exposure. Positive result in tests for nitrate reductase, Tween 80 hydrolysis and β-glucosidase activity. Negative result in tests for niacin accumulation, arylsulfatase activity at 3 days, tellurite reduction and urease activity. Catalase is present at 68°C and more than 45 mm foam is produced in the semiquantitative test. Isolates are susceptible to clarithromycin and resistant to quinolones, rifampicin, sulfamethoxazole and doxycycline.
Mycolic acids produce an early major and a late minor cluster of peaks. The sequences are unique in the 16S rRNA gene, where two sqvs closely related to M. arupense are present, in the hsp65 gene (three sqvs), where it most closely resembles M. nonchromogenicum, and in the rpoB gene (seven sqvs), equally divergent from M. arupense and M. nonchromogenicum. Phylogenetically the species is included in the MTC and is most closely related to M. nonchromogenicum. The type strain is GN-1T (=NCTC 13432T=LMG 24735T=CECT 7509T).

The type strain is FI-07034T (=DSM 45394T=CCUG 58460T).

ACKNOWLEDGEMENTS

We thank Antonella Grottola (Laboratory of Microbiology and Virology, Modena University Hospital, Modena, Italy) for her valuable comments on the manuscript. We are grateful to Meg Lafferty for reviewing the language of the manuscript.

REFERENCES

