Candida adriatica sp. nov. and Candida molendinolei sp. nov., two yeast species isolated from olive oil and its by-products

Neža Cadež,1 Peter Raspor,1 Benedetta Turchetti,2,3 Gianluigi Cardinali,3 Gino Ciafardini,4 Gianluca Veneziani5 and Gábor Péter6

1Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
2DBVPG Industrial Yeasts Collection, University of Perugia, Borgo XX Giugno 74, I-06121 Perugia, Italy
3Department of Applied Biology, University of Perugia, Borgo XX Giugno 74, I-06121 Perugia, Italy
4Department of Animal, Plant and Environmental Sciences, Agriculture Faculty, University of Molise, Via De Sanctis, I-86100 Campobasso, Italy
5Department of Economics and Food Science, University of Perugia, Borgo XX Giugno 74, I-06121 Perugia, Italy
6National Collection of Agricultural and Industrial Microorganisms, Faculty of Food Sciences, Corvinus University of Budapest, Somlói út 14-16, H-1118 Budapest, Hungary

Thirteen strains isolated from virgin olive oil or its by-products in several Mediterranean countries were found to be phenotypically and genetically divergent from currently recognized yeast species. Sequence analysis of the large subunit (LSU) rDNA D1/D2 domain and internal transcribed spacer regions/5.8S rDNA revealed that the strains represented two novel species described as Candida adriatica sp. nov. (type strain ZIM 2334T = CBS 12504T = NCAIM Y.02001T) and Candida molendinolei sp. nov. (type strain DBVPG 5508T = CBS 12508T = NCAIM Y.02000T). Phylogenetic analysis based on concatenated sequences of the small subunit rRNA gene, the D1/D2 region of the LSU rDNA and the translation elongation factor-1α gene suggested that C. adriatica sp. nov. and C. molendinolei sp. nov. should be placed within the Lindnera and Nakazawaea clades, respectively.

Olive oil is a typical product of the Mediterranean area and is well known for its high nutritional value. Extra virgin olive oil is obtained from the fruit of the olive tree (Olea europaea L.) solely by milling and cold-pressing of olive flesh. Although the freshly extracted virgin olive oil is bitter and has green olive fruit characteristics, it improves after a period of storage. This improvement of flavour is assigned to enzymic activities of either plant or microbial origin during extraction or the sedimentation phase (Ciafardini & Zullo, 2002; Servili et al., 2004; Vichi et al., 2011). Yeasts have been found to be the predominant micro-organisms associated with olive oil (Ciafardini & Zullo, 2002), which suggests that they may play a role in flavour improvement or be involved in the production of undesired acidity due to their lipolytic activity (Ciafardini et al., 2006a, b; Koidis et al., 2008).

During a survey of yeasts other than Candida boidinii, Candida wickerhamii and Saccharomyces cerevisiae associated with extra virgin olive oils (V. Režič-Dereani & N. Cadež, unpublished results), two groups of isolates showing a distinct physiological profile were found. Based on the degree of divergence in the D1/D2 region of the large subunit (LSU) rDNA, we predicted that these groups represent two novel yeast species. Because initially only one to two isolates were recovered for each species from Croatian olive oil, additional strains from Slovenian, Israeli and Italian olive oils (Zullo et al., 2010) or concentrate from olive vegetation water in Italy were collected. For phylogenetic placement of the isolates, sequences of the D1/D2 regions of the LSU rDNA, the translation elongation factor-1α (EF-1α) gene and small subunit (SSU) rDNA were determined. Thirteen strains, which are hereby described and represent two novel species (Candida adriatica sp. nov. and Candida molendinolei sp. nov.)

Abbreviations: EF-1α, translational elongation factor-1α; ITS, internal transcribed spacer; LSU, large subunit; SSU, small subunit.

The GenBank/EMBL/DDBJ accession numbers for the sequences determined in this study are listed in Table 1.

Three supplementary figures are available with the online version of this paper.
moldinolei sp. nov.), clustered into the two distinct clades of Lindnera and Nakazawae, respectively.

The yeast strains listed in Table 1 were isolated either by dilution of spoiled olive oils or by membrane filtration of extra virgin olive oil through nitrocellulose filters with 0.2 μm pore size. The dilutions or membrane filters were transferred onto YPD (Sigma) agar plates. For the isolation of strains NCAIM Y.01995, NCAIM Y.01996 and NCAIM Y.01997, 0.1 ml olive oil samples were transferred to the surface of Rose-Bengal chloramphenicol (RBC) agar (Merck) and streaked using a loop. The agar plates were incubated at 25°C for 5 days in darkness. Individual colonies were picked up and purified by repeated streaking on GPY agar before further study. DBVPG 5508T, DBVPG 5509 and DBVPG 55010 were isolated by transferring a crude phenolic concentrate separated from olive vegetation water as described by Servili et al. (2011) onto the surface of malt extract agar [3% MEA; 3% malt extract (Biotech), 0.5% peptone (Costantino), 2% agar (Biotech), pH 5.4] following the methods described above. The strains were characterized by standard methods described by Kurtzman et al. (2011). Sporulation was investigated on acetate (1.4% sodium acetate, 0.04% glucose), cornmeal, potato-glucose, 2% malt extract, 5% malt extract, glucose-peptone-yeast extract (GPY), yeast extract-malt extract (YM), V8 and diluted (1:9) V8 agars at 15 and 25°C for up to 5 weeks. For macromorphological analysis, 3% MEA and YM agar [0.3% yeast extract (Costantino), 0.5% peptone, 0.3% malt extract, 1% glucose (Carlo Erba Reagents), 2% agar] were used. Lipolytic activity was examined on tributyrin agar (Fluka) incubated for 7 days at 25°C, as well as according to the method described by Phaff et al. (1997). Proteolytic activity was tested on milk agar (Fluka) for 7 days at 25°C.

The D1/D2 regions of the LSU rDNA and the internal transcribed spacer (ITS) regions were sequenced as described previously (Cadez et al., 2003). The SSU rDNA and EF-1α gene were amplified by primers NS1 and NS8 (White et al., 1990) and YTEF-1G and YTEF-6G (Kurtzman & Robnett, 2003), respectively. Prior to sequencing, the fragments were inserted into pGEM-T vector system (Promega) as detailed in Cadez et al. (2006). All sequences were determined by a commercial sequencing facility (Macrogen, Korea). Sequences

Table 1. List of strains isolated, their origin and GenBank/EMBL/DDBJ accession numbers

<table>
<thead>
<tr>
<th>Species/strain designation</th>
<th>Origin</th>
<th>Accession number*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Candida adriatica sp. nov. (Group A)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZIM 2334T (=CBS 12504T)</td>
<td>Sediment of extra virgin olive oil, Slovenian Istria, Slovenia</td>
<td>HE574675 HE574667 HE574661 HE574654</td>
</tr>
<tr>
<td>NCAIM Y.02001T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAPES 1933</td>
<td>Extra virgin olive oil, Italy</td>
<td>HE603645 HE603646 JN637464 JN637464</td>
</tr>
<tr>
<td>LCF 963</td>
<td>Extra virgin olive oil, Italy</td>
<td>ND ND JN637463 JN637463</td>
</tr>
<tr>
<td>NCAIM Y.01995 (=ZIM 2328)</td>
<td>Unfiltered extra virgin olive oil, Italy</td>
<td>HE574674 HE574666 HE574660 HE574653</td>
</tr>
<tr>
<td>ZIM 2219</td>
<td>Spoiled virgin olive oil, Island of Korčula, Croatia</td>
<td>HE574673 HE574665 FR690076 HE574652</td>
</tr>
<tr>
<td>Candida moldinolei sp. nov. (Group B)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBVPG 5508T (=CBS 12508T)</td>
<td>Crude phenolic concentrate from olive vegetation water, Perugia, Italy</td>
<td>HE574679 HE574671 JN688665 JN688668</td>
</tr>
<tr>
<td>NCAIM Y.02000T</td>
<td>Crude phenolic concentrate from olive vegetation water, Perugia, Italy</td>
<td>ND ND JN688666 JN688669</td>
</tr>
<tr>
<td>DBVPG 5509</td>
<td>Crude phenolic concentrate from olive vegetation water, Perugia, Italy</td>
<td>HE574680 HE574672 JN688667 JN688670</td>
</tr>
<tr>
<td>DBVPG 5510</td>
<td>Unfiltered extra virgin olive oil, Italy</td>
<td>HE574677 HE574669 HE574663 HE574657</td>
</tr>
<tr>
<td>NCAIM Y.01996 (=ZIM 2330)</td>
<td>Spoiled olive oil with a twig of the olive tree in a bottle, Israel</td>
<td>ND ND HE574664 HE574658</td>
</tr>
<tr>
<td>NCAIM Y.01997 (=ZIM 2329)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZIM 2279</td>
<td>Extra virgin olive oil, Split, Croatia</td>
<td>ND ND FR690077 HE574656</td>
</tr>
<tr>
<td>ZIM 2280</td>
<td>Extra virgin olive oil, Split, Croatia</td>
<td>HE574676 HE574668 HE574662 HE574655</td>
</tr>
<tr>
<td>ZIM 2320</td>
<td>Extra virgin olive oil, Slovenian Istria, Croatia</td>
<td>HE574678 HE574670 FR690078 HE574659</td>
</tr>
</tbody>
</table>

*Gene sequences: SSU, nuclear small subunit rDNA; EF-1α, translation elongation factor-1α gene; D1/D2, large subunit rDNA domains; ITS, internal transcribed spacer including the 5.8S rDNA region.
were aligned using CLUSTAL_X (Thompson et al., 1997). Most parsimonious trees were generated by the PAUP* 4.0b10 software package (Swofford, 2002) using a heuristic search procedure with 1000 random addition replicates and tree bisection-reconnection branch swapping. The stability of the branches was assessed by bootstrap analysis (Felsenstein, 1985) in which 1000 replicates were set in PAUP*. Relationships between strains were determined by the network creation method Minimum Spanning Tree, based on the number of nucleotide changes in the ITS/5.8S rDNA (positions 37–620) and D1/D2 domains of the LSU rDNA (positions 25–558), using BioNumerics 6.6.

Thirteen strains isolated from olive oil or its by-products in several Mediterranean countries segregated into groups A and B based on their LSU rDNA D1/D2 and ITS/5.8S rDNA sequences (Table 1). A connected network based on ITS–D1/D2 sequences was constructed by using the minimum spanning method to show relationships between strains of groups A and B (see Fig. S1 in IJSEM Online). Group A consisted of five strains; strain ZIM 2334T, isolated from olive oil in Slovenia, was placed in a central position between strains from Croatia and Italy. Only two Italian strains (DAPES 1933 and LCF 963) shared identical sequences. Group B was genetically more homogeneous as only two genetically divergent Croatian isolates (ZIM 2279 and ZIM 2280) differed from the main group. The latter comprised six strains isolated from various Mediterranean countries. Additionally, a similar ITS sequence belonging to strain ITEM10464, which was isolated from wastewater of olive oil production in Italy (Bleve et al., 2011), is deposited in GenBank (FN376420) and differs in one nucleotide substitution from sequences in Group B. The strain was not studied here because it was discovered too late for inclusion in the present study. Furthermore, Romo-Sánchez et al. (2010) isolated yeast strains from olive paste or pomace in Spain that may be similar to strains of Group B but, due to the low quality and shortness of their sequences (GQ340436, GQ340443, GQ340444, GQ340448), the level of similarity was difficult to establish.

A few physiological discrepancies were found among strains of both groups but they were mainly limited to the intensity and speed of the conventional physiological test reactions. On the other hand, there was a notable difference in the morphological appearance of strains NCAIM Y.01996, ZIM 2320, ZIM 2279 and ZIM 2280 on MEA and YM agars as their texture was pasty and not as viscous as other strains of Group B (see Fig. S2).

A BLAST similarity search with D1/D2 sequences revealed that Group A was most closely related to the species of the Lindnera clade (Kurtzman et al., 2008), comprising mostly species belonging to the genus Lindnera Kurtzman et al. nom. illegt., a homonym of the plant genus Lindnera Fuss (Minter, 2009). For this reason, Cyberlindnera (Minter, 2009) is used in this report instead of Lindnera, as proposed by Kurtzman (2011c). Group A differed from the type strains of Cyberlindnera fabianii and Cyberlindnera japonica by 20 substitutions. Based on the extent of divergence in D1/D2 regions as well as additional molecular and phenotypic evidence, the name Candida adriatica sp. nov. (MycoBank no. MB 563572) is proposed for the strains of Group A. Group B differed from the type strains of Candida ishiwadae, Nakazawaea holstii and Candida peltata belonging to Nakazawaea clade (Kurtzman & Robnett, 2010) by 14, 17 and 23 D1/D2 substitutions, respectively. For the strains of Group B, the name Candida molendinolei sp. nov. (MycoBank no. MB 563573) is proposed.

For reliable taxonomic placement of the putative two novel species, additional genes such as EF-1α and SSU rDNA were determined and concatenated together with D1/D2 LSU rDNA and ITS/5.8S rDNA sequences. In the most-parsimonious tree presented in Fig. 1, the strains assigned to Candida adriatica sp. nov. were located in the Lindnera clade clustering together with the type strain of Cyberlindnera japonica and Candida sp. NRRL YB-2097. Furthermore, the strains of Candida molendinolei sp. nov. were placed in the Nakazawaea clade with the type strain of Candida peltata as the closest relative with high statistical support (see Fig. S3).

The physiological characteristics of Candida adriatica sp. nov. differed from those of Cyberlindnera americana, Cyberlindnera euphorbiaphila, Cyberlindnera japonica and Cyberlindnera petersonii (Table 2) based on a combination of the following properties: inability to assimilate raffinose and melitose, absence of growth at 37 °C and fermentation of sucrose. The phenotypic characteristics of Candida molendinolei sp. nov. were compared with those of its phylogenetically closest relatives, i.e. Candida ishiwadae, N. holstii and Candida peltata, as well as with those of Candida wickerhamii, which is the most similar species phenotypically (Table 3). Specifically, Candida molendinolei sp. nov. differed from Candida wickerhamii in its inability to assimilate galactose and its ability to assimilate D-lactate and xylitol, and its ability to grow at elevated concentrations of NaCl and at 37 °C. Additionally, it differed from its phylogenetically closest relatives by its inability to assimilate sucrose, galactose, maltose, melezitose, methyl D-glucoside, starch, L-sorbose, D-arabinose, erythritol and galactitol.

As presented in Fig. 2, Candida adriatica sp. nov. and Candida molendinolei sp. nov. reproduced asexually by multipolar budding. No sexual state was observed in any of the crosses between strains of the both species under the tested conditions. Based on the above presented results, we conclude that the isolates from olive oil and its by-products are genetically and phenotypically distinct from all currently recognized yeast species and should be classified as representatives of two novel species of the anamorphic genus Candida in the Lindnera and Nakazawaea clades, respectively.

Although all strains of the two novel yeast species included in our study were isolated from olive oil or from by-products of it, members of the species Candida molendinolei sp. nov. do
Candida sp. NRRL YB-4088 (EF550448, EF550310, EF552534)
Candida sp. NRRL YB-17391' (EF550444, EF550306, EF552530)
Candida sp. NRRL YB-17210 (EF550445, EF550307, EF552531)
Candida fabianii NRRL YB-1871' (EF550459, EF550321, EF552545)
Candida amylolophila NRRL YB-1297' (EF550457, EF550319, EF552543)
Candida americana NRRL Y-2156' (EF550466, EF550328, EF552552)
Candida bimundalis NRRL Y-5343' (EF550467, EF550329, EF552553)
Candida maritima NRRL Y-17775' (EF550470, EF550332, EF552556)
Candida mycetangi NRRL Y-6843' (EF550468, EF550330, EF552554)
Candida japonica NRRL YB-2750' (EF550461, EF550323, EF552547)
Candida sp. NRRL YB-2097 (EF550462, EF550324, EF552548)
Candida adriatica DAPES 1933 (HE603645, JN637464, HE603646)
Candida adriatica ZIM 2219 (HE574673, FR890078, HE574665)
Candida adriatica ZIM 2334' (HE574675, HE574661, HE574667)
Candida adriatica NCAIM Y-1995 (HE574674, HE574660, HE574666)
Candida petersonii NRRL YB-3808' (EF550449, EF550311, EF552536)
Candida rhodanensis NRRL Y-7654' (EF550463, EF550325, EF552549)

Fig. 1. Phylogenetic tree showing the placement Candida adriatica sp. nov. (Group A) strains in the Lindnera clade (Kurtzman & Robnett, 2010) based on the concatenated datasets of SSU rDNA, D1/D2 regions of LSU rDNA and EF-1α. The GenBank/EMBL/DBJ accession numbers of the SSU rDNA, D1/D2 regions of the LSU rDNA and EF-1α gene sequences are listed in parentheses after each strain number. One of four most parsimonious trees (tree length 1820, CI=0.5593, RI=0.5885) is presented. The sequences not determined in this study were obtained from GenBank. Bootstrap percentages from 1000 replicates are shown. Ogataea minuta was used as the outgroup. Bar, number of nucleotide substitutions.

not seem to only inhabit the olive ecosystem according to very recently deposited D1/D2 and ITS sequences of strain CLIB 1308 isolated from cider in France (GenBank accession nos HE574647 and HE574642). One strain of each novel species was recovered from spoiled olive oil. Strains of Candida adriatica exhibited lipolytic activity, whereas this property was not detected in strains of Candida molendinolei. The possible effect of these novel yeast species on the quality of olive oil needs further study.

Latin diagnosis of Candida adriatica Čadež, Cardinali, Ciafardini et Péter sp. nov.

In medio liquido cum glucoso et peptono et extracto levidino post dies 3 ad 25 °C cellulae gemmantes ovoideae (3.0–5.0 × 2.0–3.5 μm), singulae, binae vel racemis conexae. Post dies decem sedimentum formatur. Cultura, in agaro cum glucoso et peptono et extracto levidino post dies 7 in 25 °C exhibit colonias rotundas cum nitido margine et albo colore. In agaro farinae Zea mays post dies 5 in 25 °C, mycelium et pseudomycelium non formantur. Ascosporae non possunt videri. Glucosum et sucrosum (lente) fermentantur. Glucosum, D-xylosum, sucr-

Osço-

osum, celllobiosum, salicinum, arbutinum, glycerolum, D-mannitolum, xylitolum, D-glucitolum, D-glucuronatum, acidum DL-lacticum, acidum succinicum, acidum citricum, ethanolum et propanum-1, 2-diolum (lente) assimilantur. D-Galactosum, L-sorosum, D-glucosaminum, N-acetyl-D-glucosaminum, D-ribosum, L-arabinosum, D-arabinosum, L-rhamnosum, melibiosum, lactosum, raffinosum, melezitosum, inulinum, amyllum, erythritolum, ribitolum, L-arabinitolum, galactitolum, inositolum, 2-keto-D-glucuronatum, D-gluconatum, D-galacturonatum, methanolum, butane-2,3-diolum et hexadecanum non assimilantur. Kalium
Table 2. Physiological characteristics that differentiate *Candida adriatica* sp. nov. (Group A) from related species (Kurtzman, 2011a)

Species: 1, Group A; 2, *Cyberlindnera americana*; 3, *Cyberlindnera euphorbiaphila*; 4, *Cyberlindnera japonica*; 5, *Cyberlindnera petersonii*. +, Positive; −, negative; s, slow.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sucrose fermentation</td>
<td>s</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>Assimilation of:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raffinose</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>Melezitose</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Growth at 37 °C</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Table 3. Physiological characteristics that differentiate *Candida molendinolei* sp. nov. (Group B) from closely related species (Kurtzman, 2011b; Lachance et al., 2011)

Species: 1, Group B; 2, *Nakazawaea holstii*; 3, *Candida peltata*; 4, *Candida ishiwadae*; 5, *Candida wickerhamii*. +, Positive; −, negative; s, slow; v, variable; w, weak; ND, no data.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trehalose fermentation</td>
<td>s</td>
<td>+</td>
<td>−</td>
<td>s</td>
<td>v</td>
</tr>
<tr>
<td>Assimilation of:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sucrose</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Galactose</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>v</td>
<td>+</td>
</tr>
<tr>
<td>Maltose</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Melezitose</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Methyl-α-D-glucoside</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>v</td>
<td>−</td>
</tr>
<tr>
<td>Soluble starch</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>L-Sorbose</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>s</td>
<td>−</td>
</tr>
<tr>
<td>L-Arabinose</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>s</td>
<td>w</td>
</tr>
<tr>
<td>D-Arabinose</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>v</td>
<td>v</td>
</tr>
<tr>
<td>Erythritol</td>
<td>−</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>−</td>
</tr>
<tr>
<td>Galactitol</td>
<td>−</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>−</td>
</tr>
<tr>
<td>DL-Lactate</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>+</td>
<td>v</td>
</tr>
<tr>
<td>Xylitol</td>
<td>+</td>
<td>ND</td>
<td>+</td>
<td>v</td>
<td>−</td>
</tr>
<tr>
<td>Nitrate</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Growth in/at:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 % NaCl</td>
<td>+</td>
<td>+/w</td>
<td>−</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>37 °C</td>
<td>+/w</td>
<td>v</td>
<td>+</td>
<td>+</td>
<td>−</td>
</tr>
</tbody>
</table>

Fig. 2. Vegetative cells of (a) *Candida adriatica* sp. nov. ZIM 2334T and (b) *Candida molendinolei* sp. nov. DBVPG 5508T grown in YPG broth for 3 days at 25 °C. Bars, 10 μm.

Typus ZIM 2334T (=CBS 12504T=NCAIM Y.02001T) ex sedimento olei olivae in Norico isolatus, preservatus in collectione Industrial Collection of Microorganisms (ZIM), Noricum.

Description of *Candida adriatica* Čadež, Cardinali, Clafardini & Péter sp. nov.

Candida adriatica (adriatica L. fem adj. adriatica from Mare Adriaticum, referring to the origin of the isolates).

In YM broth after 3 days at 25 °C, the cells are ovoid (3.0–5.0 × 2.0–3.5 μm), occurring singly, in pairs or in clusters. Budding is multipolar. Sediment is present. On YM agar after 7 days at 25 °C, the streak culture is butyrous and glossy to dull white in colour with sharp edges. Pseudomycelium or true mycelium are not formed. Formation of ascospores is not observed. Glucose and sucrose (slow) are fermented. Glucose, D-xylose, sucrose, maltose, α,α-trehalose (variable), methyl α-D-glucoside, cellobiose, salicin, arbutin, glycerol, xylitol, D-glucitol, D-mannitol, D-glucono-δ-lactone, D-gluconate, DL-lactate, succinate, citrate, ethanol and propane-1,2-diol (slow) are assimilated; D-galactose, L-sorbose, D-glucosamine, N-acetyl-D-glucosamine, D-ribose, L-arabinose, D-arabinose, L-rhamnose, melibiose, lactose, raffinose,
melezitose, inulin, starch, erythritol, ribitol, L-arabininitol, galactitl, inositol, 2-keto-D-gluconate, D-glucuronate, D-galacturonate, methanol, butane-2,3-diol and hexadecane are not assimilated. Potassium nitrate, sodium nitrite, ethylamine and lysine are assimilated; cadaverine, creatine, creatinine, glucosamine and imidazole are not assimilated as nitrogen sources. Growth in vitamin-free medium is absent. Maximum growth temperature is 35 °C. Starch-like compounds are not produced. Urease activity and the diazonium blue B reaction are negative. No growth occurs with 0.01 % cycloheximide, on 50 % (w/w) glucose or with 1 % acetic acid. Growth in 10 % NaCl is slow and variable. Proteinase activity is positive; lipase activity is variable. The MycoBank no. is MB 563572.

The type strain, ZIM 2334T (=CBS 12504T=NCAIM Y.02001T), was isolated from sediment of extra virgin olive oil collected in Koper, Slovenia.

Latin diagnosis of Candida molendinolei Čadež, Turchetti & Péter sp. nov.

In extracto mali post dies tres ad 25 °C culturae vegetativaie subglobosae, ovoidae aut ellipsoidae (1.5–4.0 × 2.5–5.0 μm), singulae aut binae gemmationis causa sunt. Gemmation multipolaris. Cellulae gemmantes 50 % usque ad 75 % omnium. Sedimentum formatur. In agaro malti post dies tres ad 25 °C cultura est butyrosa vel molles in textura, nitidae, glabrae, albidae in colore, planae, cum margine integra. Ascii non formatur. Glucosum et trehalosum (aliaquando lente) fermentantur. Glucosum, D-glucosaminum (aliaquando lente), N-acetyl-D-glucosaminum (aliaquando lente), D-ribosum (aliaquando lente), D-xylulosum (aliaquando lente), L-arabinosum, L-rhamnosum, z,α-trehalosum, cellobiosum, salicinum, arbutinum, glycerolem, ribitolum, xylitolum, L-arabininitolum (lente), D-glucitolum, D-mannitolum, D-glucono-δ-lactonum (aliaquando lente), acidad DL-lacticum, acidum succinicum, acidum citricum et ethanolum assimilantur. Galactosum, L-soritosum, D-arabinosum, sucrosum, maltosum, methyl α-D-glucosidum, melibiosum, lactosum, raffinosum, melezitose, inulinum, amyllum, erythritolum, galactitolum, inositolum, 2-keto-D-gluconatum, D-glucuronatum, D-galacturonatum, methanol et hexadecanum non assimilantur. Propanum-1,2-diolum et butanum-2,3-diolum non assimilantur aut assimilantur lente. Kalium nitricum, natrium nitrosum, ethylaminum, L-lysinum et cadaverinum assimilantur neque creatitionum, creatinum, D-glucosaminum nec imidazolum. Vitamina externa crescentiae necessaria sunt. Maxima temperatura crescentiae 37 °C (exigue). Materia amyloidea idophila non formatur. Urea non finditur. Diaziomum caerulenum non respondet. In medio cum 0.01 % cycloheximido et 10 % NaCl crescit neque cum 50 % glucosio vel 16 % NaCl.

Typus DBVPG 5508T (=CBS 12508T=NCAIM Y.02000T) isolatus ex aqua tractationis olivarum et in Italia, preservatus est in collectione zymotica DBVPG Industrial Yeasts Collection, Perugia, Italia.

Description of Candida molendinolei Čadež, Turchetti & Péter sp. nov.

Candida molendinolei (mo.len.din.o’le.i. L. n. molendinum -i-a milling place, mill-house; L. n. oleum -i oil; N.L. gen. n. molendinolei referring to an oil-mill house, the place from which the isolates were obtained).

In malt extract broth after 3 days at 25 °C, the cells are subglobose to ovoid or ellipsoid (1.5–4.0 × 2.5–5.0 μm), occurring singly or in pairs. Budding is multipolar. Budding cells occur at a level of 50–75 % of the total number of cells. Sediment is present. On 3 % MEA after 3 days at 25 °C, the steak culture is butyros to viscous, glossy, dull white in colour and flat or slightly raised at the centre with an entire margin. On corn meal agar, neither pseudohyphae nor septate hyphae are formed. Ascospore formation is not observed. Glucose and z,α-trehalose (slow) are fermented. Glucose, D-glucosamine (slow), N-acetyl-D-glucosamine (slow), D-ribose (slow), D-xylitol (slow), L-arabinose, L-rhamnose, z,α-trehalose, cellobiose, salicin, arbutin, glycerol, ribitol, xylitol, L-arabininitol (slow), D-glucitol, D-mannitol, D-glucono-δ-lactonum (slow), DL-lactate, succinate, citrate and ethanol are assimilated; galactose, sorbose, D-arabinose, sucrose, maltose, methyl α-D-glucoside, melibioso, lactose, raffinoso, melezitose, inulin, starch, erythritol, galactitol, inositol, 2-keto-D-glucuritole, D-gluconate, D-glucuronate, D-galacturonate, methanol and hexadecane are not assimilated; propane-1,2-diol and butane-2,3-diol are not assimilated or are assimilated with slow growth. Potassium nitrate, sodium nitrite, ethylamine, lysine and cadaverine are assimilated, but creatine, creatinine, glucosamine and imidazole are not assimilated as nitrogen sources. Growth in vitamin-free medium is absent. Maximum growth temperature is 37 °C, although weak growth is observed. Starch-like compounds are not produced. Urease activity and the diazonium blue B reaction are negative. Growth occurs with 0.01 % cycloheximide and with 10 % NaCl, but no growth was observed in 50 % (w/w) glucose, 1 % acetic acid or 16 % NaCl. The MycoBank no. is MB 563573.

The type strain, DBVPG 5508T (=CBS 12508T=NCAIM Y.02000T), was isolated from olive vegetation water in Italy.

Acknowledgements

We acknowledge Vasilij Valenčič from the Institute for Ecology, Olive Oil and Control, LABS LLC, Slovenia for olive oil samples and Vesna Režit-Dereani for collecting yeast isolates from the olive environment. We also thank Dr Livio Antonelli (DBA) and Biagio Zullo (DAPES) for useful and critical discussions. The work was partly funded by the Slovenian Research Agency (P4-0116 and MRIC-UL ZIM, IP-0510).

References

Hanseniaspora meyeri sp. nov., _Hanseniaspora clermontiae_ sp. nov.,
Hanseniaspora lachancei sp. nov. and _Hanseniaspora opuntiae_ sp. nov.,

of _Hanseniaspora-Kloeckera_ species using multigene sequence analysis
with taxonomic implications: descriptions of _Hanseniaspora pseudoguilliermondii_ sp. nov. and _Hanseniaspora occidentalis_ var. _citrica_ var.

oblive oil. _Int J Food Microbiol_ 75, 111–118.

activity of _Williopsis californica_ and _Saccharomyces cerevisiae_ in extra

using the bootstrap. _Evolution_ 39, 783–791.

flora in turbid virgin olive oils and the physicochemical characteristics
of these oils. _Eur J Lipid Sci Technol_ 110, 164–171.

Kurtzman, C. P. (2011a). _Lindnera_ Kurtzman, Robnett & Basehoar-
Amsterdam: Elsevier.

639. Edited by C. P. Kurtzman, J. W. Fell & T. Boekhout. Amsterdam:
Elsevier.

Kurtzman, C. P. (2011c). Phylogeny of the ascomycetous yeasts and
the renaming of _Pichia anomala_ to _Wickerhamomyces anomalus_.
Antoni van Leeuwenhoek 99, 13–23.

among yeasts of the _Saccharomyces_ complex determined from
multigene sequence analyses. _FEMS Yeast Res_ 3, 417–432.

assembling yeasts and neighboring taxa from multigene sequence
analysis and the proposal of _Petersozyma_ gen. nov., a new member of
the _Saccharomyces_ family. _FEMS Yeast Res_ 10, 353–361.

Phylogenetic relationships among species of _Pichia, Issatchenkia_ and
Williopsis determined from multigene sequence analysis, and the proposal
of _Barnettozyma_ gen. nov., _Lindnera_ gen. nov. and _Wickerhamomyces_ gen.
nov. _FEMS Yeast Res_ 8, 939–954.

Methods for isolation, phenotypic characterization and maintenance
of yeasts. In _The Yeasts, a Taxonomic Study_, 5th edn, vol. 1, pp. 87–
110. Edited by C. P. Kurtzman, J. W. Fell & T. Boekhout. Amsterdam:
Elsevier.

Lachance, M.-A., Boekhout, T., Scorzetti, G., Fell, J. W. & Kurtzman,
C. P. (2011). _Candida_ Berkhout (1923). In _The Yeasts, a Taxonomic
Study_, 5th edn, vol. 2, pp. 987–1278. Edited by C. P. Kurtzman,

Minter, D. M. (2009). _Cyberlindnera_, a replacement name for _Lindnera_
Kurtzman et al., nom. illegit. _Mycotaxon_ 110, 473–476.

starmeri_ sp. nov., a new species of yeast occurring in cactus necroses. _Int

Romo-Sánchez, S., Alves-Baffi, M., Arévalo-Villena, M., Ubeda-
Irazo, J. & Briones-Pérez, A. (2010). Yeast biodiversity from oleic
ecosystems: study of their biotechnological properties. _Food Microbiol_
27, 487–492.

Servili, M., Selvagigni, R., Esposto, S., Taticchi, A., Montedoro, G. &
oil hydrophilic phenols: agronomic and technological aspects of
production that affect their occurrence in the oil. _J Chromatogr A_
1054, 113–127.

Servili, M., Rizzello, C. G., Taticchi, A., Esposto, S., Urbani, S.,
Mazzacane, F., Di Maio, I., Selvagigni, R., Gobbetti, M. & Di Cegno, R.
(2011). Functional milk beverage fortified with phenolic compounds
extracted from olive vegetation water, and fermented with functional
laetic acid bacteria. _Int J Food Microbiol_ 147, 45–52.

Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. &
strategies for multiple sequence alignment aided by quality analysis

healthy olive microbiota during virgin olive oil extraction influences

direct sequencing of fungal ribosomal RNA genes for phylogenetics.
Edited by N. Innis, D. Gelfand, J. Sninsky & T. White. London:
Academic Press.

Zullo, B. A., Cioccia, G. & Ciafardini, G. (2010). Distribution of
dimorphic yeast species in commercial extra virgin olive oil. _Food
Microbiol_ 27, 1035–1042.