Lysinibacillus macroides sp. nov., nom. rev.

An Coorevits,1,2 Anna E. Dinsdale,3 Jeroen Heyrman,2 Peter Schumann,4 Anita Van Landschoot,1,2 Niall A. Logan3 and Paul De Vos2

1Laboratory of Biochemistry and Brewing, Faculty of Applied Engineering Sciences, University College Ghent, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
2Laboratory of Microbiology (LM-U Gent), Department of Biochemistry and Microbiology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
3Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Cowcaddens Road, Glasgow G4 0BA, UK
4DSMZ – German Collection of Microorganisms and Cell Cultures, Inhoffenstr. 7B, D-38124 Braunschweig, Germany

‘Bacillus macroides’ ATCC 12905T (=DSM 54T=LMG 18474T), isolated in 1947 from cow dung, was not included in the Approved Lists of Bacterial Names and so it lost standing in bacteriological nomenclature. Reinvestigation of the strain, including DNA–DNA relatedness experiments, revealed that ‘Bacillus macroides’ is genomically distinct from its closest relatives Lysinibacillus xylanilyticus, Lysinibacillus boronitolerans and Lysinibacillus fusiformis (as determined by 16S rRNA gene sequence analysis, with pairwise similarity values of 99.2, 98.8 and 98.5 %, respectively, with the type strains of these species). Further analysis showed that ‘Bacillus macroides’ shares the A4α L-Lys–D-Asp peptidoglycan type with other members of the genus Lysinibacillus and can thus be attributed to this genus. These results, combined with additional phenotypic data, justify the description of strain LMG 18474T (=DSM 54T=ATCC 12905T) as Lysinibacillus macroides sp. nov., nom. rev.

Pringsheim & Robinow (1947) gave the provisional name ‘Lineola longa’ to a very large, Gram-negative, filamentous bacterium of unusual morphology. Later, Pringsheim (1950) described the genus Lineola with ‘L. longa’ as the type species, and mentioned that a subculture of ‘L. longa’ had been deposited in the American Type Culture Collection (ATCC). Bennett & Canale-Parola (1965) reinvestigated the type strain (ATCC 12905T) and they found that its morphology corresponded closely to the earlier description. However, the strain formed endospores under suitable conditions and stained Gram-positive. Bennett & Canale-Parola (1965) mentioned that they sent a culture to Pringsheim, who recognized it as ‘L. longa’. In addition, Pringsheim confirmed the formation of endospores in stock cultures of ‘L. longa’ kept in his laboratory. After confirmation of strain originality, Bennett & Canale-Parola (1965) concluded that ‘L. longa’ should be renamed ‘Bacillus macroides’. The species was not included in the Approved Lists of Bacterial Names (Skerman et al., 1980) because there were too few strains available and so no adequate description existed at the time the lists were compiled. As a consequence, it lost standing in bacteriological nomenclature. The species was included in the Species Incertae Sedis section of Bacillus in Bergey’s Manual (Logan & De Vos, 2009), with the comment that the characters of ‘B. macroides’ conform to those of Bacillus sphaericus (recently reclassified as Lysinibacillus sphaericus; Ahmed et al., 2007) with the exception of endospore morphology, the endospore of ‘B. macroides’ being described as frankly oval and scarcely distending the sporangium.

At the beginning of this study, two strains named ‘B. macroides’ were available: ATCC 12905T (=DSM 54T=LMG 18474T), on which the original description was based, and NCIMB 8796 (=NCDO 1661=LMG 18508), of which a 16S rRNA gene sequence was available (EMBL accession number X70312). A discrepancy was observed between these two strains. On the one hand, Xu & Côté (2003) demonstrated that ‘B. macroides’ strain ATCC 12905T shared highest 3’-end 16S rRNA gene and 5’ end 16S–23S rRNA gene sequence similarity with Bacillus fusiformis (=Lysinibacillus fusiformis; Ahmed et al., 2007) and B. sphaericus (=L. sphaericus; Ahmed et al., 2007); on the other hand, ‘B. macroides’ strain NCIMB 8796 showed an almost identical 16S rRNA gene sequence to Bacillus simplex LMG 11160T. In a polyphasic study by Heyrman et al. (2005), including DNA–DNA relatedness experiments, it was shown that ‘B. macroides’ strain NCIMB 8796 indeed belongs to B. simplex and should be renamed accordingly. Since the characteristics of ‘B.
The genus Lysinibacillus is characterized by a distinctive peptidoglycan composition (type A4s L-Lys–D-Asp). In this study, we investigated whether LMG 18474T (strain LMG 18474T, ATCC 12905T and DSM 54T were generated and, as can be seen in Fig. S1 (available in IJSEM Online), these profiles proved to be identical. Based on the literature discussed above, the 16S rRNA gene sequence of L. macroides strain LMG 18474T (AJ628749) was compared with the 16S rRNA gene sequences of type strains of all described Bacillus and Lysinibacillus species, as well as with members of the genera Kurthia and Caryophanon. Pairwise similarity values were calculated using the ARB software (Ludwig et al., 2004) and were found to be highest with members of the genus Lysinibacillus, i.e. 99.2% with L. xylanilyticus XDB9T, 98.8% with L. boronitolerans 10aT, 98.5% with L. fusiformis NRRL NRS-350T, 97.9% with L. sphaericus NRRL B-23268T and 97.5% with L. parviboronicapiens BAM-582T. Phylogenetic trees based on these 16S rRNA gene sequences were constructed by aligning all sequences based on the integrated aligner of the ARB software (Ludwig et al., 2004). Refinement of the alignment was obtained by applying the bacterial position variability filter integrated in ARB, resulting in a final alignment of 1402 positions. The alignment was then exported to MEGA5 software (Tamura et al., 2011) to construct neighbour-joining, maximum-likelihood and maximum-parsimony trees. The jModelTest 0.1.1 program (Posada, 2008) was applied to the dataset to determine the best fit evolutionary model, and the resulting parameters, namely the GTR evolutionary model with 0.581 as the proportion of invariable sites value and a gamma shape value of 0.418, were applied for tree construction where appropriate. Bootstrap analysis based on 1000 replicates was performed on all three types of trees to assess the reliability of the clusters. The resulting neighbour-joining tree is represented in Fig. 1; maximum-parsimony consensus and maximum-likelihood trees are shown in Figs S2 and S3, respectively (available in IJSEM Online). In all three trees, L. macroides, L. boronitolerans and L. xylanilyticus grouped together and were then joined by a group including L. sphaericus, L. fusiformis and L. parviboronicapiens, both subgroups forming a monophyletic cluster of Lysinibacillus species. Based on these findings, a DNA–DNA relatedness study and determinations of the DNA G+C content were performed on L. macroides LMG 18474T, L. boronitolerans DSM 17140T, L. xylanilyticus CCUG 57438T, L. sphaericus LMG 7134T, L. parviboronicapiens KCTC 13154T and L. fusiformis LMG 9816T. For determination of the DNA G+C content and DNA–DNA hybridization, about 1 g biomass was harvested from tryptone soy agar (TSA) plates and DNA was purified as described by Logan et al. (2000). DNA–DNA hybridization was performed using a modification of the microplate method described by Ezaki et al. (1989), as described by Willems et al. (2001). A hybridization temperature of 32 °C was used (calculated with correction for the presence of 50% formamide). The DNA G+C content was determined by hybridization (Mesbah et al., 1989), using further specifications given by Logan et al. (2000). Mean DNA–relatedness values of L. macroides towards the type strains of L. xylanilyticus, L. boronitolerans, L. fusiformis, L. sphaericus and L. parviboronicapiens were 35, 31, 31, 24 and 21%, respectively. This indicates that LMG 18474T at least represents a separate genus. Type strains of the closely related species L. sphaericus and L. fusiformis showed a DNA–DNA relatedness value of 25.2%, confirming their separate species status. The DNA G+C value of L. macroides was 38.2 mol% (mean value of three determinations), which is highly similar to that of L. sphaericus and L. fusiformis (both 37.2 mol%). Bennett & Canale-Parola (1965) reported a DNA G+C value of 42.0 mol% for L. macroides, which is rather higher than the value obtained in this study.

Purified peptidoglycan preparations were obtained after disruption of cells by shaking with glass beads and subsequent trypsin digestion, according to the method of Schleifer (1985). The amino acids and peptides in the cell wall hydrolysates [(i) 6 M HCl, 120 °C, 16 h; (ii) 4 M HCl, 100 °C, 16 h; (iii) 4 M HCl, 100 °C, 45 min] were analysed by two-dimensional ascending TLC on cellulose plates by using previously described solvent systems (Schleifer, 1985). The molar ratios of the amino acids were determined by GC and GC–MS of N-heptafluorobutyrly amino acid isobutyl esters (MacKenzie, 1987; Groth et al., 1996). Cell material of L. macroides LMG 18474T and L. boronitolerans DSM 17140T was obtained after growth...
on TSA (Oxoid) for 24 h at 28 °C. Polar lipids were subsequently extracted and separated by using two-dimensional TLC according to Tindall (1990a, b). The total lipid profiles were visualized by spraying with molybdatophosphoric acid and further characterized by spraying with ninhydrin (specific for amino groups), molybdenum blue (specific for phosphates) and α-naphthol (specific for sugars). GC analysis of fatty acid methyl esters was performed starting from cells grown on plates containing 30 g trypticase soy broth (BBL, Becton Dickinson) supplemented with 15 g Bacto Agar (Difco) per litre of distilled water, and the plates were incubated for 24 h at 28 °C. Fatty acid methyl ester extraction and analysis were performed as described by Vancanneyt et al. (1996). For determination of cell and sporangial morphologies, isolates were grown on TSA at pH 7 and 30 °C for 24–48 h and further observed as described by Logan et al. (2000). Strains were characterized phenotypically as described by Logan & De Vos (2009); anaerobic growth was tested using a GasPak jar with a methylene blue indicator strip, and an aerobic control culture. L. macroides strain LMG 18474T was tested for carbon source assimilation using the Biotype 100 Gallery (bioMérieux), according to Logan et al. (2002). Additionally, L. macroides LMG 18474T, L. boronitolerans DSM 17140T, L. sphaericus LMG 7134T, L. fusiformis LMG 9816T and L. xylanilyticus CCUG 57438T were analysed using the Biolog Gen III characterization system (Biolog) following protocol B according to the manufacturer's instructions.

Peptidoglycan analysis revealed that strain LMG 18474T has the A4α L-Lys–D-Asp peptidoglycan type, confirming the result of an earlier analysis (Schleifer & Kandler, 1972), and in agreement with the description of Lysinibacillus (Ahmed et al., 2007). Kurthia species are also characterized by this type of cell wall, with lysine and aspartic acid as the diagnostic amino acids (Albert et al., 2007); however, members of this genus can easily be differentiated from members of the genus Lysinibacillus by their inability to form endospores. Members of the genus Ureibacillus were characterized by an A4α L-Lys–D-Asn type of peptidoglycan (Fortina et al., 2001), but the recently described species Ureibacillus composti and Ureibacillus thermophilus show the A4α L-Lys–D-Asp peptidoglycan type (Weon et al., 2007), as observed in Lysinibacillus species. Albert et al. (2007) transferred three Bacillus species, Bacillus arvi, Bacillus arenosi and Bacillus neidei, to the novel genus Viridibacillus based on discriminative chemotaxonomic markers. Analysis of cell wall type revealed that Viridibacillus arvi DSM 16317T and Viridibacillus arenosi DSM 16319T had the same A4α L-Lys–D-Asp peptidoglycan.
type, whereas *Viridibacillus neidei* NRRL BD-87T and *Bacillus pycnus* NRRL BRS-1691T (now *Rummeliibacillus pycnus*, Vaishampayan et al., 2009) were characterized by the L-Lys–D-Glu peptidoglycan type (Albert et al., 2007). The latter type has also been reported for *Solibacillus silvestris* (Rheims et al., 1999). Despite the differences in peptidoglycan type between *V. arenosi*, *V. arrivi* and *V. neidei*, all three species have been assembled within a single genus, *Viridibacillus*. This is in concordance with Abd El-Rahman et al. (2002), who did not wish to propose a new genus to accommodate *Bacillus psychrodurans*, *Bacillus psychrotolerans* and *Bacillus insolitus* based only upon the distinctive A4\textbeta\ L-Orn–D-Glu type alone. They reasoned that such single-parameter-based taxa are prone to be unstable and that such a proposal would be premature. However, very recently Krishnamurthi et al. (2010) did transfer these three species to the novel genus *Psychrobacillus* based on phenotypic, including chemotaxonomic, characteristics, and ribotype patterns. The view of Abd El-Rahman et al. (2002) is in contrast to Ahmed et al. (2007), who delineated *Lysinibacillus* mainly on the basis of its distinctive peptidoglycan type. A comprehensive polyphasic study of the *Bacillus* RNA group 2 organisms (Ash et al., 1991) might reveal 'good' borderlines between existing genera and potential new ones, and future rearrangements within this group can be expected. However, it must be said that it is difficult to find phenotypic differences between the members of this group as they tend to be unreactive in many routine characterization tests (e.g. API 50CHB and API Biotype 100 kits). *L. macroides*, for example, is unreactive in API 50CHB and 20E tests and did not show growth on most of the carbon sources in the BioType 100 carbon source assimilation gallery (bioMérieux). Using the Biolog Gen III system, strains *L. macroides* LMG 18474T, *L. boronitolerans* DSM 17140T, and *B. sphaericus* LMG 7134T, *L. fusiformis* LMG 9816T and *L. xylanilyticus* CCUG 57438T reacted positively for utilization of inosine, L-arginine, L-glutamic acid, L-histidine, L-serine, methyl pyruvate, D-lactic acid methyl ester, L-lactic acid, Tween 40, \(\beta\)-hydroxybutyric acid, \(\beta\)-hydroxy-DL-butyric acid, \(\varepsilon\)-ketobutyric acid, diacetic acid and acetic acid. Strains were sensitive to fusidic acid, troleandomycin, minocycline, lincomycin, sodium tetradeyl sulfate, vancomycin, tetrazolium violet and tetrazolium blue. *L. macroides* LMG 18474T could be differentiated from its closest neighbours based on the Biolog Gen III system by its sensitivity to lithium chloride, aztreonam and sodium butyrate; additional differential characters based on Biolog Gen III are given in Table 1. Bennett & Canale-Parola (1965) reported *B. macroides* as negative for the Voges–Proskauer test and weakly positive for gelatin hydrolysis, but *L. macroides* LMG 18474T reacted positively for Voges–Proskauer and did not hydrolyse gelatin. Logan & De Vos (2009) repeated the comment of Claus & Berkeley (1986) that the endospore of *B. macroides* is frankly oval and scarcely distends the sporangium, a character that distinguishes it from *B. sphaericus* (= *L. sphaericus*). However, in the present work, the endospore and sporangial morphologies of *L. macroides* LMG 18474T were not observed to be distinctly different from those of *L. sphaericus* (Fig. 2 and Fig. S4 available in IJSEM Online). The major fatty acid for *L. macroides* LMG 18474T was iso-C\textsubscript{15:0} (45.3±4.6\%). Moderate amounts of iso-C\textsubscript{16:0} (12.8±0.6\%), C\textsubscript{16:1}\(\varepsilon\)\textsubscript{7c} alcohol (12.3±2.0\%), anteiso-C\textsubscript{15:0} (7.9±3.0\%), C\textsubscript{16:1}\(\varepsilon\)\textsubscript{11c} (7.2±2.0\%) and iso-C\textsubscript{14:0} (5.1±1.1\%) were detected, whereas minor to trace amounts of iso-C\textsubscript{17:0} (3.3±0.5\%), anteiso-C\textsubscript{17:0} (1.8±0.6\%), C\textsubscript{16:0} (1.7±0.8\%), iso-C\textsubscript{17:1}\(\varepsilon\)\textsubscript{10c} (1.3±0.8) and C\textsubscript{14:0} (<1.00\%) were observed. These values (based on four replicate profiles of strain LMG 18474T) confirm the placement of strain LMG 18474T in the genus *Lysinibacillus*, which is characterized by iso-C\textsubscript{15:0} as the major fatty acid (Ahmed et al., 2007). Furthermore, fatty acid profiles of the type strains of neighbouring species have been generated and are presented in Table S1 (available in IJSEM Online). Different relative amounts of anteiso-C\textsubscript{15:0} allow differentiation of *L. macroides* LMG 18474T from *L. boronitolerans* DSM 17140T and *L. fusiformis* LMG 9816T; *L. macroides* LMG 18474T can be differentiated from *L. xylanilyticus* CCUG 57438T based on a lower amount of iso-C\textsubscript{15:0}. A higher relative abundance of C\textsubscript{16:1}\(\varepsilon\)\textsubscript{7c} alcohol and the absence of anteiso-C\textsubscript{17:0} and C\textsubscript{16:0} differentiated *L. sphaericus* LMG 1734T from *L. macroides* LMG 18474T. Major polar lipids for *L. macroides* LMG 18474T and *L. boronitolerans* DSM 17140T were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. Phosphoaminolipids (PAL1 to 4) and unknown lipids (L1 to 5) have also been detected in minor amounts; both profiles were highly similar but phosphoaminolipid PAL1, detected in LMG 18474T, was not present in DSM 17140T (Fig. S5a and b, available in IJSEM Online). This profile matches the polar lipid profile described for the genus *Lysinibacillus* with diphosphatidylglycerol and phosphatidylglycerol as the major components (Ahmed et al., 2007). However, glycolipids, which are typical for members of the genera *Bacillus*, *Paenibacillus* and *Cohnella* (Kämpfer et al., 2006), were not detected in this study, although Ahmed et al. (2007) reported on a ninyhydrin-positive phosphoglycolipid. The profile of *L. macroides* LMG 18474T is much more complex than the profile of *Kurthia* species as reported by Goodfellow et al. (1980), enabling their distinction. Phenotypic and chemotaxonomic data allow the differentiation of *L. macroides* from other *Lysinibacillus* species as shown in Table 1. Based on the data discussed above, *’B. macroides’* strain LMG 18474T is proposed as *Lysinibacillus macroides* sp. nov., nom. rev.

Lysinibacillus macroides sp. nov., nom. rev.

Lysinibacillus macroides [ma.cri.’des. Gr. adj. makros large or long; Gr. suff. -eides (from Gr. n. eidos form or shape) resembling, similar; N.L. masc. adj. macroides long in form, describing the elongated appearance of the rods].

Description is based on a single strain. Strictly aerobic, Gram-positive and Gram-negative motile rods. Cell size is...
Table 1. Characteristics that differentiate *L. macroides* from the type strains of other *Lysinibacillus* species

All data are from this study. Strains: 1, *Lysinibacillus macroides* LMG 18474^T^; 2, *Lysinibacillus boronitolerans* DSM 17140^T^; 3, *Lysinibacillus sphaericus* LMG 7134^T^; 4, *Lysinibacillus fusiformis* LMG 9816^T^; 5, *Lysinibacillus xylanilyticus* CCUG 57438^T^. All type strains gave positive results for motility, growth without NaCl, catalase activity and Voges–Proskauer test, and negative results for H₂S production, β-galactosidase (ONPG) and indole production. +, Positive reaction; –, negative reaction; w, weak reaction; –/w, negative or weakly positive; v, variable; ND, no data available.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell length (μm)</td>
<td>3.0–100*</td>
<td>3.0–5.0</td>
<td>1.5–5.0</td>
<td>1.5–5.0</td>
<td>3.0–5.0</td>
</tr>
<tr>
<td>Gram reaction</td>
<td>V</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Growth at:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 °C</td>
<td>w</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>45 °C</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Growth in/at:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 % (w/v) NaCl</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>7 % (w/v) NaCl</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>pH 6.0</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Oxidase</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Nitrate reduction</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>L-Arginine dihydrolase</td>
<td>–</td>
<td>w</td>
<td>w</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Hydrolysis of:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aesculin</td>
<td>–</td>
<td>–/w</td>
<td>–</td>
<td>–</td>
<td>ND</td>
</tr>
<tr>
<td>Casein</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Gelatin</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Urea</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Acid production from:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-Acetyl-D-glucosamine</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>N-Acetyl-β-D-mannoside</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>D-Glucose</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>w</td>
<td>–</td>
</tr>
<tr>
<td>Urea</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Propionic acid</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Formic acid</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>DNA G+C content (mol%)</td>
<td>38.2</td>
<td>36.5</td>
<td>37.2</td>
<td>37.2</td>
<td>37.2</td>
</tr>
</tbody>
</table>

L. macroides produces long filaments in broth culture.
The predominant fatty acid is iso-C_{15:0} moderate amounts of iso-C_{16:0} and C_{16:1} \text{ω7c} alcohol are present.

The type strain is DSM 54T (=ATCC 12905T), which was isolated from cow dung. The DNA G+C content of the type strain is 38.2 mol%.

Acknowledgements

The authors are indebted to Anneleen Wieme, University College Ghent, and Freek Spitaels, Ghent University, for their valuable help in analysing MALDI-TOF profiles.

References

