Proposal of *Intrasporangium mesophilum* sp. nov., and reclassification of *Humihabitans oryzae*
Kageyama et al. 2007 as *Intrasporangium oryzae* comb. nov.

Ling-Ling Yang,1† Tao Ao,1† Xing-Hong Wang,1 Jie He,1 Hans-Peter Klenk,2 Shu-Kun Tang1 and Wen-Jun Li1

1Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education and Laboratory for Conservation and Utilization of Bio-resources, Yunnan Institute of Microbiology, Yunnan University, Kunming 650091, PR China

2DSMZ- Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstraße 7b, D-38124 Braunschweig, Germany

A Gram-positive and aerobic bacterium, designated strain YIM 49065T, was isolated from rhizospheric soil of *Jatropha curcas* in Yunnan, China. This isolate formed branched and fragmented mycelia containing LL-diaminopimelic acid as the diagnostic diamino acid in the cell-wall peptidoglycan. The major cellular fatty acid profile was characterized by iso-C\textsubscript{14}:0, iso-C\textsubscript{15}:0 and iso-C\textsubscript{16}:0, and the predominant menaquinone was MK-8(H\textsubscript{4}). The DNA G+C content was 69.6 mol\%. A phylogenetic analysis based on 16S rRNA gene sequence demonstrated that strain YIM 49065T was closely associated with *Intrasporangium calvum* DSM 43043T and *Humihabitans oryzae* KV-657T, exhibiting 98.8 % and 98.6 % 16S rRNA gene sequence similarities, respectively. Furthermore, DNA–DNA hybridizations among strains YIM 49065T, *I. calvum* DSM 43043T and *H. oryzae* DSM 22331T indicated that this isolate represented a novel species in the genus *Intrasporangium*. On the basis of these data, we proposed one novel species, *Intrasporangium mesophilum* sp. nov., for strain YIM 49065T (DSM 23217T = CCTCC AA 209077T). Additionally, the comparison of biochemical and phylogenetic characters supported the reclassification of *Humihabitans oryzae* as a separate species within the genus *Intrasporangium*, *Intrasporangium oryzae* comb. nov. (type strain KV-657T = JCM 15924T = NBRC 101802T = NRRL B-24470T).

During a screening programme of bacteria with lipase activity used for biodiesel production, strain YIM 49065T was isolated from the rhizospheric soil sample of an oil-seed plant, *Jatropha curcas*, collected from Chuxiong, Yunnan province, south-west China. The isolate was obtained after incubation at 28 \textdegree C for 14 days and was subsequently maintained on trypticase soy agar (TSA; Difco) at 4 \textdegree C, and as a glycerol suspension (20 %, v/v) at −20 \textdegree C. To determine the taxonomic position of this isolate, a preliminary sequence analysis based on the 16S rRNA gene was performed. Genomic DNA extraction and PCR amplification of the 16S rRNA gene were carried out by using the method described by Li et al. (2007). Sequence comparison via BLAST searches (Altschul et al., 1990) against sequences from the GenBank, EMBL or DDBJ databases revealed that strain YIM 49065T had a close relationship with members of the family *Intrasporangiaceae*, especially the genera *Intrasporangium* (Kalakoutskii et al., 1967) and *Humihabitans* (Kageyama et al., 2007), both being monospecific. At the time of writing, the family *Intrasporangiaceae* (Stackebrandt et al., 1997; Stackebrandt & Schumann, 2006; Zhi et al., 2009) contains 19 genera with validly published names, including *Intrasporangium* as the type genus. The genus *Humihabitans* was proposed mainly according to differences of menaquinone and fatty acid types from its closest phylogenetic neighbour *Intrasporangium* (Kageyama et al., 2007).

In order to discriminate these micro-organisms and identify strain YIM 49065T, a polyphasic approach was used. Cultural characteristics and colour of the aerial and substrate mycelia were determined following the method described by Shirling & Gottlieb (1966). Morphological characteristics were observed by using light microscopy (BH2; Olympus) and scanning electron microscopy (JSM5600LV; JEOL) after
14 days' growth on ISP (International Streptomyces Project) 2 agar medium (Shirling & Gottlieb, 1966). Growth at various temperatures (4, 10, 20, 28, 32, 37, 40 and 45 °C), pH (5, 6, 7, 8, 9 and 10) and NaCl concentrations (0–10%, w/v, at intervals of 0.5%) were performed using ISP 2 as basal medium. Cells of the strain were Gram-positive as determined according to Gregersen's method (Gregersen, 1978). Strain YIM 49065T developed well on most test media, including ISP 2, ISP 3, ISP 5 (Shirling & Gottlieb, 1966), potato-glucose agar, nutrient agar and Czapek's agar (Dong & Cai, 2001), but weakly on ISP 4 (Shirling & Gottlieb, 1966). White to pale orange-yellow substrate mycelia and white aerial mycelia were produced. Strain YIM 49065T formed extensively branched and fragmented mycelia (Fig. S1, available in IJSEM Online). The isolate grew well at 20–37 °C (optimum 28 °C), pH 6–8 (optimum pH 7–8) and in the presence of 3% NaCl (w/v). No diffusible pigments were produced on any media tested here.

Physiological and biochemical characteristics were determined following standard procedures. Catalase activity was determined by assessing bubble production in 3% (v/v) H2O2. Degradation of cellulose, gelatin, urea and Tweens 20, 40 and 80 was determined as described by Cowan & Steel (1965). Carbon utilization was tested using ISP 9 (Pridham & Gottlieb, 1948) containing each carbon source (Pridham & Gottlieb, 1948) containing each carbon source and a final concentration of 0.5% (w/v). Other physiological characteristics, such as H2S and melanin production, and milk coagulation and peptonization, were examined according to the protocols described by Gordon et al. (1974). These phenotypic characteristics are listed in the species description and Table 1. Strain YIM 49065T exhibited many phenotypic features in common with the type strains of Intrasporangium calvum and Humihabitsans oryzae. They all grew with 3% NaCl and were positive for catalase activity, nitrate reduction and utilization of fructose, sucrose and D-xylose as sole carbon sources, but negative for production of H2S, hydrolysis of urea and utilization of arabinose and lactose. Some characteristics differentiating strain YIM 49065T from the type strains of I. calvum and H. oryzae are given in Table 1.

Biomass for the study of chemotaxonomic characteristics, except cellular fatty acid analysis, was prepared by cultivation in shaken flasks of tryptic soy broth (TSB; Difco) at 170 r.p.m. at 28 °C and then harvested by centrifugation. Isomers of diaminopimelic acid were analysed according to the procedure developed by Hasegawa et al. (1983). Whole cell sugars were detected by precolumn derivatization with 1-phenyl-3-methyl-5-pyrazolone (PMP) by HPLC (Tang et al., 2009). Polar lipids were extracted and identified by two-dimensional TLC (Minnikin et al., 1979; Collins & Jones, 1980). Menaquinones were extracted and purified as described by Minnikin et al. (1984) and analysed by HPLC (Kroppenstedt, 1982) with Pseudonocardia antarctica DSM 44749T [predominant menaquinone is MK-8(H4)] and Bacillus psychrodurans DSM 11713T (predominant menaquinones are MK-8 and MK-7) as reference strains. For fatty acid analysis, strain YIM 49065T was prepared by scraping cells from TSA that had been incubated for 5 days at 28 °C. I. calvum DSM 43043T and H. oryzae DSM 22331T were also grown under the same conditions until they reached exponential phase. Analysis was carried out by using the Sherlock Microbial Identification System (MIDI) according

Table 1. Characteristics that differentiate strain YIM 49065T from its nearest phylogenetic neighbours

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>YIM 49065T</th>
<th>I. calvum DSM 43043T</th>
<th>H. oryzae DSM 22331T</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH range</td>
<td>6–8</td>
<td>6–8</td>
<td>5–11</td>
</tr>
<tr>
<td>Temperature range (°C)</td>
<td>20–37</td>
<td>20–40</td>
<td>8–40</td>
</tr>
<tr>
<td>Aerial mycelium</td>
<td>White</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Substrate mycelium</td>
<td>White, pale orange-yellow</td>
<td>Whitish, cream-whitish</td>
<td>Pale yellow</td>
</tr>
<tr>
<td>Degradation of gelatin</td>
<td>+</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Utilization as sole carbon source</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cellobose</td>
<td>−</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Glucose</td>
<td>+</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>Inositol</td>
<td>−</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>Mannitol</td>
<td>−</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>Raffinose</td>
<td>−</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>L-Rhamnose</td>
<td>−</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>D-Ribose</td>
<td>+</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Sorbose</td>
<td>−</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>Trehalose</td>
<td>−</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Major fatty acids (%; >10%)</td>
<td>iso-C14.0 (11.3), iso-C15.0 (43.3), iso-C16.0 (13.0)</td>
<td>iso-C15.0 (37.6), iso-C16.0 (13.1)</td>
<td>iso-C14.0 (14.7), iso-C15.0 (41.8), iso-C16.0 (18.7)</td>
</tr>
<tr>
<td>Whole cell-sugars</td>
<td>Galactose, mannose, glucose, arabinose</td>
<td>Galactose, mannose, glucose</td>
<td>Galactose, mannose, glucose, ribose</td>
</tr>
<tr>
<td>DNA G+C content (mol%)</td>
<td>69.6</td>
<td>68.8</td>
<td>71.2</td>
</tr>
</tbody>
</table>
to the manufacturer’s instructions. Fatty acid methyl esters were then analysed by GC (Agilent Technologies 7890A GC System) by using the Microbial Identification software package (Sherlock Version 6.1; MIDI database TSBA6).

The chemotaxonomic data showed some significant similarities among strains YIM 49065T, *I. calvum* DSM 43043T and *H. oryzae* DSM 22331T, even though there was some diversity. The whole cell sugars of strain YIM 49065T were galactose, mannose, arabinoose and glucose. The polar lipids of the three strains comprised diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidyltnositol and phosphatidylinositol mannoside, with an unknown ninhydrin-positive phosphoglycolipid and two unknown lipids (Fig. S2). Interestingly, the predominant menaquinone was detected as MK-8(H4) for strains YIM 49065T, *I. calvum* DSM 43043T and *H. oryzae* DSM 22331T (Fig. S3). This result differs from previous reports that the predominant menaquinone of *I. calvum* was MK-8 (Collins et al., 1984; Kalakoutskii, 1989; Kageyama et al., 2007). The main reason why *H. oryzae* was proposed as a new genus in the family *Intrasporangiaceae* was that the predominant menaquinone of *H. oryzae* DSM 22331T was determined as MK-8(H4) by Kageyama et al. (2007). Given that all other representatives of the family possess totally MK-8(H4) as the characteristic menaquinone (Stackebrandt & Schumann, 2006; Wang et al., 2009), MK-8(H4) should be the characteristic menaquinone not only of the other members of the genus *Intrasporangium*, but also of the family *Intrasporangiaceae*. The cellular fatty acid profile for the novel strain consisted predominantly of branched fatty acids, including (>10% of total fatty acids) iso-C14:0 (11.3%), iso-C15:0 (43.3%) and iso-C16:0 (13.0%). This profile is similar to those of the closely related species *I. calvum* and *H. oryzae*, but there were differences in the proportions of each fatty acid (Table 1). The fatty acid profiles of strains YIM 49065T, *I. calvum* DSM 43043T and *H. oryzae* DSM 22331T are given in Table S1.

Multiple alignments and sequence evolutionary distance calculations were carried out by using CLUSTAL X software (Thompson et al., 1997), and the positions with gaps were excluded before final analysis. Phylogenetic analyses were performed using the neighbour-joining (Saitou & Nei, 1987) and maximum-parsimony (Fitch, 1971) methods contained in MEGA version 4 (Tamura et al., 2007). Maximum-likelihood analysis was performed by using PhyML (Guindon & Gascuel, 2003). The topology of the phylogenetic tree was evaluated by the bootstrap resampling method of Felsenstein (1985) with 1000 replicates. The 16S rRNA gene sequence of strain YIM 49065T shared the highest pairwise similarity with *I. calvum* DSM 43043T (98.8%) and *H. oryzae* KV-657T (98.6%), while *I. calvum* and *H. oryzae* exhibited 98.7% similarity to each other. This result was confirmed by using MEGA version 4 with pairwise deletion for gaps; however, the similarity value between *I. calvum* and *H. oryzae* was reported as 97.6% by Kageyama et al. (2007), determined with gaps. The phylogenetic tree reconstructed by using the neighbour-joining method suggested that strain YIM 49065T formed a stable clade with *I. calvum* and *H. oryzae*, being well separated from the other genera of family *Intrasporangiaceae* (Fig. 1). This relationship was supported by maximum-parsimony

Fig. 1. Neighbour-joining tree derived from aligned 16S rRNA gene sequences, showing the position of YIM 49065T among its phylogenetically closest neighbours. Bootstrap values (≥50%) based on 1000 replications are shown at branch nodes. Bar, 0.005 substitutions per nucleotide position.
and maximum-likelihood tree-making algorithms with high bootstrap value (Figs S4 and S5).

The G+C content of genomic DNA was determined using the HPLC method as described by Mesbah et al. (1989), with DNA prepared according to the method of Marmur (1961). DNA–DNA hybridization was carried out by using photobiotin-labelled probes in microplate wells with five replications as described by Ezaki et al. (1989) and He et al. (2005). Fluorescence was measured by using a microplate spectrophotometer (Gemini XPS; Molecular Devices). Reciprocal reactions were performed for every DNA pair. The DNA G+C content of strain YIM 49065T was 69.6 mol%. The levels of DNA–DNA relatedness between strain YIM 49065T and its nearest neighbours, _I. calvum_ DSM 43043T and _H. oryzae_ DSM 22331T, were 43.9 % and 52.1 %, respectively (standard deviations were 3.2 % and 5.4 %). _I. calvum_ and _H. oryzae_ shared a value of 40.6 % (standard deviation 7.1 %). These are lower than the 70 % cut-off point recommended for delineation of a novel species (Stackebrandt & Goebel, 1994), suggesting that strains YIM 49065T, _I. calvum_ DSM 43043T and _H. oryzae_ DSM 22331T represent different species.

On the basis of phenotypic, genotypic and phylogenetic data presented here, strain YIM 49065T differs from its closest relatives, _I. calvum_ DSM 43043T and _H. oryzae_ DSM 22331T. It is suggested that strain YIM 49065T should be recognized as a novel species of the genus _Intrasporangium_, for which we propose the name _Intrasporangium mesophilum_ sp. nov. Furthermore, based on chemotaxonomic characteristics and phylogenetic analysis, we propose that _H. oryzae_ should be reclassified as _Intrasporangium oryzae_ comb. nov. The description of the genus _Intrasporangium_ is emended, and differential chemotaxonomic characteristics among the genera of the family _Intrasporangiaceae_ are listed in Table S2.

Emended description of the genus _Intrasporangium_ Kalakoutskii et al. 1967

This emended description is based on that given by Stackebrandt & Schumann (2006), with the following changes and additions. The predominant menaquinone is MK-8(H4). Major fatty acids (>10 %) are iso-C15:0 and iso-C16:0. The polar lipids comprise diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and phosphatidylinositol mannoside, with an unknown ninhydrin-positive phosphoglycolipid and two unknown lipids. The type species is _Intrasporangium calvum_.

Emended description of _Intrasporangium calvum_ Kalakoutskii et al. 1967

The description is based on that by Kalakoutskii et al. (1967) and Stackebrandt & Schumann (2006) with the following features. Growth is observed in the range pH 6–8 and 20–40 °C. NaCl tolerance range is 0–3 % (w/v). Tests for catalase activity and nitrate reduction are positive; tests for H2S production, gelatin liquefaction and urea hydrolysis are negative. Cellobiose, fructose, raffinose, L-rhamnose, sucrose and D-xylose are utilized as sole carbon source, but arabinose, glucose, inositol, lactose, mannitol, D-ribose, sorbose and trehalose are not utilized. The dominant menaquinone, major cellular fatty acids and polar lipid profile are as described in the description for the genus _Intrasporangium_.

The type strain is ATCC 23552T (=DSM 43043T = NBRC 12989T = JCM 3097T = NRRL B-3866T = VKM Ac-701T).

Description of _Intrasporangium oryzae_ comb. nov.

Intrasporangium oryzae (o.ry’zae. L. gen. n. oryzae of rice, pertaining to the isolation of the type strain from rice paddy soil).

Basonym: _Humihabitans oryzae_ Kageyama et al. 2007.

The description is identical to that given by Kageyama et al. (2007), supplemented with recent data. Nitrate is reduced, but gelatin is not hydrolysed and H2S is not produced. Can use fructose, glucose, inositol, mannitol, sorbose, sucrose, trehalose and D-xylose as sole carbon sources, but not arabinose, cellobiose, lactose, raffinose, L-rhamnose or D-ribose. The polar lipids remain as given in the genus description.

The type strain is KV-657T (=JCM 15924T =NBRC 101802T =NRRL B-24470T), isolated from rice paddy soil in Japan.

Description of _Intrasporangium mesophilum_ sp. nov.

Intrasporangium mesophilum [me.so.’phi.lum. Gr. adj. mesos middle; Gr. adj. philos loving; N.L. neut. adj. mesophilum middle (temperature)-loving, mesophilic].

Aerobic, Gram-positive, non-motile actinomycete that forms extensively branched and fragmenting mycelia. Grows well on ISP 2, ISP 3, ISP 5, potato-glucose agar, nutrient agar and Czapek’s agar but poorly on ISP 4. No diffusible pigment is produced. Temperature range for growth is 20–37 °C, with optimum growth at 28 °C. Growth occurs at pH 6–8 and in the presence of 0–3 % NaCl. Gelatin is degraded, but casein, cellulose, urea and Tweens 20, 40 and 80 are not. Positive for catalase, reduction of nitrate, and milk coagulation and peptonization, but negative for H2S and melanin production. Fructose, glucose, D-ribose, sucrose and D-xylose are utilized as sole carbon sources, but arabinose, cellobiose, inositol, lactose, mannitol, raffinose, L-rhamnose, sorbose and trehalose are not. The cell wall contains L,L-diaminopimelic acid as the diagnostic diamino acid. Whole-cell hydrolysates contain galactose, mannose, arabinose and glucose. The predominant menaquinone is MK-8(H4). The major fatty acids (>10 %) are iso-C14:0, iso-C15:0 and iso-C16:0. The polar lipids comprise diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, phosphatidylinositol mannoside, an unknown ninhydrin-positive phosphoglycolipid and two unknown lipids. The DNA G+C content of the type strain is 69.6 mol%.
The type strain, YIM 49065T (=DSM 23217T =CCTCC AA 209077T), was isolated from the rhizospheric soil of an oilseed plant, *Jatropha curcas*, collected in Chuxiong, Yunnan province, China.

Acknowledgements

This research was supported by National Basic Research Program of China (no. 2010CB833801), Key Project of International Cooperation (2007DFA31620), Yunnan Provincial Science and Technology Department (2009DA002), Yunnan University (2009C16Q) and National Undergraduate Innovation Experiment Project.

References

