Streptomyces nanhaiensis sp. nov., a marine streptomycete isolated from a deep-sea sediment

Xin-Peng Tian,1,2 Li-Juan Long,1 Fa-Zuo Wang,1 Ying Xu,2 Jie Li,1,2 Jing Zhang,2 Chang-Sheng Zhang,1 Si Zhang1 and Wen-Jun Li2

1Key Laboratory of Marine Bio-Resources Sustainable Utilization, CAS, RNAM Center for Marine Microbiology, CAS, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
2Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education and Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Institute of Microbiology, Yunnan University, Kunming 650091, PR China

A novel aerobic streptomycete, strain SCSIO 01248T, was isolated from a sample of deep-sea sediment collected from the northern South China Sea, at a depth of 1632 m. This isolate formed yellow–white substrate mycelium and grey–white aerial hyphae. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain SCSIO 01248T was most closely related to *Streptomyces radiopugnans* R97T (98.8 % sequence similarity), *S. macrosporus* NBRC 14748T (97.5 %) and *S. megasporus* NBRC 14749T (97.3 %). The novel strain could, however, be readily differentiated from *S. radiopugnans* DSM 41901T on the basis of some physiological and cellular chemical characteristics; the level of DNA–DNA relatedness between these two strains was only 40 %. Based on phylogenetic and phenotypic evidence, strain SCSIO 01248T represents a novel species, for which the name *Streptomyces nanhaiensis* sp. nov. is proposed. The type strain is SCSIO 01248T (=DSM 41926T =KCTC 19401T =CCTCC AA 208007T).

Streptomyces is the largest genus of the phylum **Actinobacteria** and is the type genus of the family **Streptomycetaceae** (Kämpfer, 2006). The members of the genus *Streptomyces* are Gram-positive bacteria with high G+C contents and are characterized by a complex secondary metabolism. They produce over two-thirds of the clinically useful antibiotics of natural origin (Kieser et al., 2000). Streptomycetes are found predominantly in soil and in decaying vegetation, and most produce spores. A gram of soil, an important habitat for this group of bacteria, typically contains 10^4–10^7 c.f.u. of streptomycetes, representing 1–20 %, or an even larger proportion, of the total counts of viable bacteria (Schrempf, 2006). In contrast, the total numbers of culturable actinobacteria in fresh samples of marine sediments are very low (usually about 10^2–10^3 c.f.u. g^{-1}), especially in samples collected more than 1000 m below the sea surface. In the South China Sea, for example, *Streptomyces* species are scarce in sediment samples collected at depths beyond 1000 m, even though *Streptomyces* and *Micromonospora* species predominate in sediments collected at depths of 30–300 m (unpublished results).

During our investigation of marine actinobacterial resources in the South China Sea, a novel isolate, strain SCSIO 01248T, was obtained from a sediment sample collected at a depth of 1632 m, a pH of about 7.8 and a temperature of 5 °C. Here we report the classification and identification of this new isolate based on a polyphasic taxonomic approach. Strain SCSIO 01248T was isolated from a sediment sample collected below the northern South China Sea, at 118°57.006′ N 22°0.574′ E, using methods described by Tian et al. (2009). A grey–white colony was picked after incubation at 28 °C for 3 weeks on humic acid-vitamin agar (Hayakawa & Nomura, 1987) that had been made with 70 % (v/v) natural seawater in distilled water (instead of pure distilled water). The purified strain was maintained both on ISP medium 2 and as 20 % (w/v) glycerol suspensions at −80 °C. Biomass for chemotaxonomic and molecular systematic studies was obtained by cultivation in ISP 2 broth or, for the fatty acid analysis, trypticase soy broth (Difco) at 28 °C for 1 week, with continuous shaking at 150 r.p.m.

For morphological and cultural characterization, strain SCSIO 01248T was incubated at 28 °C for 28 days on ISP media 2, 3, 4 and 5 and Czapek’s solution agar (Waksman, 1961), nutrient agar (Difco) and potato agar (Waksman, 1961). Cell morphology was examined using a light microscope (BH2; Olympus), a transmission electron microscope...
(JEM-1010; JEOL) and a scanning electron microscope (JSM 5600LV; JEOL) and cells that had been incubated for 14 or 28 days on ISP medium 2 modified by replacement of the pure distilled water with 50 % (v/v) seawater in distilled water. Diffusible pigments were investigated by comparing cultures against the most suitable colour chips from the ISCC-NBS Color Charts (Kelly, 1964).

The Gram-reaction test was performed as described by Smibert & Krieg (1994). Tests for hydrolysis of starch, gelatin, cellulose and Tweens 20, 40, 60 and 80, milk coagulation and peptonization and utilization of urea were carried out as described by Tindall et al. (2007). The methods used for determination of H₂S and melanin production, nitrate reduction, production of soluble pigments and use of various substrates (each at a final concentration of 1 %, w/v) as sole carbon sources were those described by Williams et al. (1989). Catalase activity was evaluated by the production of oxygen bubbles in 3 % (v/v) H₂O₂ and oxidase activity by the use of oxidase reagent (bioMérieux). Ranges of temperature and pH for growth and tolerance of NaCl were evaluated as described by Xu et al. (2005) using ISP medium 2 as the basal medium, made with 50 % (v/v) natural seawater in distilled water (instead of pure distilled water). The medium pH was adjusted using acetate/citrate buffer (pH 4–6), KH₂PO₄/NaOH (pH 6–8), NaHCO₃/Na₂CO₃ (pH 9–10) or Na₂HPO₄/NaOH (pH 11). Antibiotic susceptibility was examined as described by Groth et al. (2004), using antibiotic discs on ISP medium 2. The morphological, cultural, physiological and biochemical characteristics of strain SCSIO 01248ᵀ are given in Table 1, Fig. 1 and the species description.

Diaminopimelic acid and whole-cell sugars were analysed according to the procedures developed by Hasegawa et al. (1983). Menaquinones were isolated using the methods of Minnikin et al. (1984) and separated by HPLC (Kroppenstedt, 1982). Polar lipids were extracted and examined by using published procedures (Minnikin et al., 1979; Collins & Jones, 1980). Fatty acids were analysed by using standard methods (Sasser, 1990) and version 6.0 of the Sherlock Microbial Identification System (MIDI). The genomic DNA G+C content was determined by HPLC (Mesbah et al., 1989).

The cell-wall peptidoglycan of strain SCSIO 01248ᵀ contains LL-diaminopimelic acid, glycine, asparagine, glutamic acid

Table 1. Comparison of characteristics of strain SCSIO 01248ᵀ and S. radiopugnans DSM 41901ᵀ

All data were obtained in this study with the exception of the major fatty acid profile of S. radiopugnans R97ᵀ (=DSM 41901ᵀ), which was taken from Mao et al. (2007).

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>SCSIO 01248ᵀ</th>
<th>S. radiopugnans DSM 41901ᵀ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spore chain morphology</td>
<td>Straight to spiral</td>
<td>Spiral</td>
</tr>
<tr>
<td>Spore surface ornamentation</td>
<td>Smooth to rough</td>
<td>Rough to warty</td>
</tr>
<tr>
<td>Utilization of:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arabinose</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>Cellulose</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>D-Mannitol</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>L-Rhamnose</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>D-Ribose</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>Trehalose</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>Xyitol</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>Citrate</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>Hydrolysis of Tween 20</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>Temperature range for growth (℃)</td>
<td>10–45</td>
<td>20–50</td>
</tr>
<tr>
<td>NaCl concentration for growth (%)</td>
<td>0–7.5</td>
<td>0–7</td>
</tr>
<tr>
<td>Growth at pH 5 and 11</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>Major menaquinones (% of total)*</td>
<td>36</td>
<td>65</td>
</tr>
<tr>
<td>MK-9(H₆)</td>
<td>55</td>
<td>31</td>
</tr>
<tr>
<td>Major fatty acids (% of total)†</td>
<td>i-C₁₆:₀ (29.9), ai-C₁₅:₀ (14.9), i-C₁₆:₁ H (14.3), i-C₁₄:₀ (10.4), ai-C₁₇:₁ (7.8), i-C₁₅:₀ (10.9), C₁₆:₁ cis9 (7.6), 9-methyl C₁₆:₀ (4.2)</td>
<td>i-C₁₆:₀ (34.5), ai-C₁₅:₀ (15.4), i-C₁₆:₁ H (14.2), i-C₁₄:₀ (5.6), ai-C₁₇:₀ (9.1), ai-C₁₇:₁ cis8 (5.2)</td>
</tr>
<tr>
<td>Phospholipids*‡</td>
<td>DPG, PE, PG, PI, PIM, PLs</td>
<td>DPG, PE, PG, PI, PLs</td>
</tr>
<tr>
<td>DNA G+C content (mol%)*</td>
<td>71.9</td>
<td>73.3</td>
</tr>
</tbody>
</table>

*Data for the two strains collected under the same culture conditions.†ai, Anteiso-branched; i, iso-branched.
‡DPG, Diphosphatidylglycerol; PE, phosphatidyethanolamine; PG, phosphatidylglycerol; PI, phosphatidylinositol; PIM, phosphatidylinositol mannosides; PLs, unknown phospholipids.
and alanine but no detectable sugar. The polar lipids were phosphatidylglycerol, diphosphatidylglycerol, phosphatidylyethanolamine, phosphatidylinositol, phosphatidylinositol mannosides and three unknown phospholipids. The menaquinones were MK-9(H8) (55.5 %), MK-9(H6) (36.8 %), MK-9(H10) (3.8 %), MK-9(H4) (1.6 %), MK-10(H8) (1.5 %) and MK-10(H4) (0.8 %). The fatty acids consisted mainly of iso-C\textsubscript{16:0} (29.9 %), anteiso-C\textsubscript{15:0} (14.9 %), iso-C\textsubscript{16:1} \text{H} (14.3 %), iso-C\textsubscript{14:0} (10.4 %), iso-C\textsubscript{15:0} (10.9 %), anteiso-C\textsubscript{17:0} (7.8 %), C\textsubscript{16:1} \text{cis}9 (7.6 %) and 9-methyl C\textsubscript{16:0} (4.2 %). The genomic DNA G + C content was 71.9 mol%.

Extraction of genomic DNA and PCR-mediated amplification and sequencing of the 16S rRNA gene of strain SCSIO 01248T were carried out according to Li et al. (2007). Multiple alignments with sequences of the recognized Streptomyces species that appeared most closely related to the novel strain and evaluation of the levels of sequence similarity were carried out using CLUSTAL_X (Thompson et al., 1997). Phylogenetic analyses were performed using neighbour-joining (Saitou & Nei, 1987), maximum-likelihood (Felsenstein, 1981) and maximum-parsimony (Fitch, 1971) methods. A phylogenetic tree was constructed using the neighbour-joining method of Saitou & Nei (1987), K_{\text{misc}} values (Kimura, 1983) and the MEGA5 software package (Tamura et al., 2011). The topology of the phylogenetic tree was evaluated by the bootstrap resampling method of Felsenstein (1985), with 1000 replicates.

DNA–DNA hybridization experiments were performed between strain SCSIO 01248T and the type strain of the most closely related established species using the optical renaturation method (De Ley et al., 1970; Huß et al., 1983; Jahnke, 1992) and a UV1601 spectrophotometer (Shimadzu).

The results of BLAST analysis of 16S rRNA gene sequences indicated that strain SCSIO 01248T was most closely related to S. radiopugnans R97T (98.8 % sequence similarity; Mao et al., 2007) followed by S. macrosporus NBRC 14748T (97.5 %) and S. megasporus NBRC 14749T (97.3 %). Several characteristics of strain SCSIO 01248T, the production of long, spirally coiled chains of spores, the presence of L-L-diaminopimelic acid in the cell-wall peptidoglycan, MK-9(H\textsubscript{4}) and MK-9(H\textsubscript{6}) as the predominant menaquinones and iso-C\textsubscript{14:0} \text{iso}-C\textsubscript{16:0} anteiso-C\textsubscript{15:0} and anteiso-C\textsubscript{17:0} as major fatty acids, were consistent with those of established Streptomyces species.

In a phylogenetic tree based on the 16S rRNA gene sequences of strain 01248T and its closest known relatives, the novel strain formed a distinct subclade and clustered with S. radiopugnans R97T, close to S. macrosporus NBRC 14748T, S. megasporus NBRC 14749T, S. glaucosporus NBRC 15416T and S. thermolinens NBRC 14750T (Fig. 2). The topologies of phylogenetic trees built using the maximum-likelihood and maximum-parsimony algorithms were similar to those of the tree constructed using neighbour-joining analysis (Fig. 2).

Several years ago, Stackebrandt & Ebers (2006) recommended an increase of about 2 % (from 97 % to 98.7–99 %) in the threshold for 16S rRNA gene sequence similarity used to determine the uniqueness of a novel isolate, provided that this level of difference in the sequences was supported by clear phenotypic differences. In this study, therefore, DNA–DNA relatedness experiments were only carried out between strain SCSIO 01248T and the type strain of established species to which it appeared most closely related: S. radiopugnans DSM 41901T. The mean level of DNA–DNA relatedness recorded between these two strains (over three replicate experiments) was 40 % and therefore well below the 70 % cut-off point recommended for the delineation of genomic species (Stackebrandt & Goebel, 1994). In addition, strain SCSIO 01248T can be readily differentiated from S. radiopugnans DSM 41901T on the basis of pH and temperature ranges for growth, sole carbon sources for growth, cellular phospholipids and predominant menaquinones and fatty acids (Table 1). Based on phylogenetic and phenotypic evidence, strain SCSIO 01248T represents a novel species within the genus Streptomyces, for which the name Streptomyces nanhaiensis sp. nov. is proposed.

Description of Streptomyces nanhaiensis sp. nov.

Streptomyces nanhaiensis [nan.hai.en’sis. N.L. masc. adj. nanhaiensis of or pertaining to Nanhai (South China Sea), where the type strain was isolated].

![Fig. 1. Scanning electron micrographs of the spore chains (a) and aerial mycelium (b) of strain SCSIO 01248T, as seen after incubation for 14 days on ISP medium 2 at 28 °C. Bars, 2 μm (a) and 10 μm (b).](image-url)
Gram-reaction-positive, aerobic actinomycete that forms yellow–white substrate mycelium and grey–white aerial hyphae. The hyphae differentiate straight to spiral chains of spores, each chain comprising about 10 spores. The spores are 1–2 μm in diameter, with a smooth to rough surface. Grows well on ISP 2, ISP 3, ISP 4 and ISP 5 media, Czapek’s solution agar and nutrient agar at 28 °C, but aerial mycelium is not easily observed on potato agar. Soluble pigments are not produced. Acetate, cellobiose, fructose, fucose, D-galactose, D-glucose, maltose, sucrose and D-xylose can be used as sole carbon sources for growth, but not arabinose, citrate, dulcitol, inositol, lactose, D-mannitol, D-mannose, L-rhamnose, D-ribose, D-sorbitol, xylitol or raffinose. Positive for hydrolysis of starch and Tweens 20, 40 and 60, nitrate reduction and catalase and weakly positive for hydrolysis of cellulose but negative for hydrolysis of gelatin and Tween 80, milk coagulation and peptoneization, H₂S and melanin production, utilization of urea and oxidase activity. Temperature, pH and NaCl concentration ranges corresponding optima are 28–37 °C, pH 6–10 and 0–7.5 % (w/v); the minimum change for a specific tree topology.

S. nanhaiensis sp. nov., was isolated from a sediment sample collected at a depth of 1632 m from the northern South China Sea. Its genomic DNA G + C content is 71.9 mol%.

Acknowledgements

The authors are grateful to Professor Hans-Peter Klenk, who kindly provided S. radiopugnans DSM 41901T. This research was supported by the National Basic Research Program of China (grant 2010CB833801), the National Natural Science Foundation of China (grant 40906075) and the Knowledge Innovation Program of the Chinese Academy of Sciences (grants KSCX2-YW-G-065, KSCX2-EW-G-12 and KZCX2-YW-JC202).

References

