Psychrobacter isolates of human origin, other than Psychrobacter phenylpyruvicus, are predominantly Psychrobacter faecalis and Psychrobacter pulmonis, with emended description of P. faecalis

Pieter Deschaght, Michèle Janssens, Mario Vaneechoutte and Georges Wauters

1Laboratory Bacteriology Research (LBR), Department Clinical Chemistry, Microbiology, Immunology, University of Ghent, Gent, Belgium
2Medical Microbiology, University of Louvain, UCL, Brussels, Belgium

Human Psychrobacter isolates, other than Psychrobacter phenylpyruvicus, are predominantly designated Psychrobacter immoblis. Phenotypic and genotypic testing of Psychrobacter isolates that have been deposited in different culture collections as P. immoblis indicates that most of these human isolates belong to the species Psychrobacter faecalis and Psychrobacter pulmonis.

At present, all Psychrobacter isolates from human origin, other than Psychrobacter phenylpyruvicus (previously Moraxella phenylpyruvica), are designated Psychrobacter immoblis. Mostly, these are clinically not very relevant, but sometimes they are considered to be opportunistic pathogens (Gini, 1990; Lloyd-Puryear et al., 1991; Lozano et al., 1994). Many other Psychrobacter species have been described, mostly from the environment and from poikilothermic animals, but recently two species, Psychrobacter faecalis and Psychrobacter pulmonis, were isolated from warm-blooded animals, i.e. from pigeon faeces (Kämpfer et al., 2002) and from the lungs of a lamb (Vela et al., 2003), respectively. The type strain of P. immoblis, ATCC 43116T, was isolated from poultry. Very recently, clinical isolates have been described as members of a novel species, Psychrobacter sanguinis (Wirth et al., 2012).

Since 2003, some human isolates have been deposited in the Culture Collection University of Göteborg (CCUG) collection and presumptively identified as P. faecalis or P. faecalis-like. Because, to our knowledge, cases of human infection with P. faecalis have not yet been published and because none of the cases was caused by infection with P. immoblis, we compared our clinical isolates with the human isolates deposited in the CCUG and Laboratorium voor Microbiologie, Universiteit Gent (LMG) culture collections as P. immoblis and Psychrobacter sp. We examined a total of 26 human Psychrobacter isolates that did not belong to P. phenylpyruvicus present in two culture collections [CCUG (n=9), LMG (n=11)] and in the collection of the UCL (Georges Wauters, Brussels, Belgium; n=6) (Supplementary Table S1, available in IJSEM Online).

Determination of 16S rRNA gene sequences was carried out as described previously (Wauters et al., 2003) and this approach identified the following species: Psychrobacter cibarius (n=1; LMG 7085), P. faecalis (n=17), Psychrobacter nivimaris (n=1; CCUG 39521) and P. pulmonis (n=7) (Supplementary Table S1, Fig. 1). Cluster analysis of the 16S rRNA gene sequences (length 1456 bp) was performed using the Kodon software (Applied Maths, Sint-Martens-Latem, Belgium) according to the neighbour-joining method based on the multiple aligned distances algorithm (open gap cost, 100%; unit gap cost, 20%). A similar clustering result was
obtained using the maximum-parsimony algorithm (with mutation cost 100%).

Three sequences have been deposited in GenBank for the type strain ATCC 43116T of *P. immobilis*, i.e. U39399 (Bowman et al., 1996), AJ309942 (Romanenko et al., 2002) and HQ698589 (this study). It should be noted that the sequence deposited under accession number U39399 differs at 33 positions from the same strain sequenced at our laboratory, whereas there are only six differences between our sequence and that deposited under accession number AJ309942.

Strains were grown on tryptic soy agar (TSA). Growth and biochemical tests were assessed at 30 °C; growth was also determined at 35 °C. Oxidase activity was determined using dimethyl-p-phenylenediamine strips (Merck). Acid production from carbohydrates was detected on low-peptone phenol red (LPPR) agar (Wauters et al., 1998) and Hugh and Leifson's oxidation–fermentation medium (Hugh & Leifson, 1953). For urease determination, liquid Christensen medium was used. Nitrate and nitrite reduction was detected using Griess reagent. A streak was inoculated onto TSA supplemented with 1 % Tween 80 and 0.01 % CaCl₂ for detection of Tween 80 esterase. For phenylalanine...
deaminase, phenylalanine agar was used. Paper discs containing 250 µg desferrioxamine were used on Mueller–
Hinton agar for susceptibility testing.

Phenotypic characterization of the *Psychrobacter* isolates indicated that all strains were positive for oxidase, catalase and tributyrin esterase, and susceptible to colistin, but negative for alkaline phosphatase, trypsin, pyrrolidonyl aminopeptidase, production of indole, β-galactosidase (ONPG), gelatin, asesculin hydrolyse and arginine dihydro-
lase, and for growth at 42 °C.

P. faecalis and *P. pulmonis*, although genotypically closely related (99% similarity between both type strains), as determined on the basis of 16S rRNA gene sequences (Fig. 1), differed markedly in terms of their phenotypic characteristics. *P. faecalis* acidified a wide range of the carbohydrates listed in Table 1, and others not listed, i.e. lactose, galactose, melibiose, cellobiose and maltose (delayed), whereas *P. pulmonis* was asaccharolytic, as are all *P. phenylpyruvicus* isolates. Our finding of strong saccharolytic activity of *P. faecalis* on LPPR agar (Wauters et al., 1998) and Hugh and Leifson’s oxidation–fermentation medium (Hugh & Leifson, 1953) contradicts the original description of this species (Kämpfer et al., 2002), which states ‘no acid production from carbohydrates’.

P. faecalis and *P. pulmonis* were urease-negative and nitrate reductase-positive, which easily differentiates them from *P. phenylpyruvicus* and *P. immobilis*. Furthermore, nitrite reductase was only positive in these two species (except for one *P. pulmonis* strain), in contrast to all other strains tested in this study. Almost all *Psychrobacter* species were positive for Tween hydrolysis; it is of interest to note that growth of *P. phenylpyruvicus* is drastically enhanced by addition of 1% Tween 80 to the medium. Strain UCL-NF 1590, a genuine *P. faecalis* strain according to its 16S RNA gene sequence, is the only isolate that is unable to hydrolyse Tween 80 or acidify ethylene glycol in this species.

Apart from the saccharolytic properties of *P. faecalis*, we found no discrepancies with the results already described for this species and the other species tested here.

We conclude that most human *Psychrobacter* isolates of European origin, other than *P. phenylpyruvicus*, belong predominantly to the species *P. faecalis* and *P. pulmonis*, and not to *P. immobilis*. We propose that the description of *P. faecalis* is emended to include the strong saccharolytic activity observed in all the *P. faecalis* strains tested in this study.

Emended description of *Psychrobacter faecalis*

Psychrobacter faecalis (fae.ca’lis. L. n. faex fecis dregs; L. masc. suff. -alis suffix denoting pertaining to; N.L. masc. adj. *faecalis* faecal).

This description is based on that of Kämpfer et al. (2002). Unless marked otherwise, most data are from this study. However, chemotaxonomic data and assimilation/utilization test data are from Kämpfer et al. (2002) and are based on the type strain only, which was the only strain available at the time of the original description. Cells are straight rods, 0.8–1.2 × 1.0–2.0 μm. Cells occur singly and are non-motile, Gram-negative, oxidase-positive and catalase-positive, with an oxidative, chemoheterotrophic metabolism. Ubiquinone Q-8 is the major quinone type, with low amounts of ubiquinone Q-9 and Q-7; spermidine is the major polyanine. The polar lipid profile is characterized by the presence of phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. The fatty acids C₁₈:₁ω9c, C₁₇:₁ω8c and summed feature 3 (C₁₆:₁ω7c and/or iso-C₁₅:₀ 2-OH), in addition to the hydroxylated fatty acid C₁₂:₀ 3-OH, are produced. On nutrient agar, colonies are circular, opaque, slightly raised and beige with entire margins. The type strain *Iso-46* grows well at 4–36 °C on different complex media, such as R2A agar and nutrient agar. No growth is observed at 45 or 55 °C on nutrient agar. No growth occurs on *Salmonella/Shigella* agar. H₂S is not produced. Negative for indole production, urease, arginine dihydrolase, lysine decarboxylase, ornithine decarboxylase and growth on *Simmons’ citrate*. Saccharolytic with acid production from glucose, arabino and xylose but not from mannitol. Acid is also produced from ethylene glycol. Utilization of N-acetyl-D-galactosamine, N-acetyl-D-glucosamine, L-arabinose (weak), D-glucose (weak), acetate, propionate (weak), cis-aconitate, 4-amino butyrate, citrate, fumarate, glutarate, DL-3-hydroxybutyrate, DL-lactate, L-malate, 2-oxoglutarate, pyruvate, L-alanine, L-aspartate, L-leucine and L-ornithine (weak) is

Table 1. Phenotypic characterization of *Psychrobacter* isolates of human origin, including type strains of *P. faecalis*, *P. immobilis*, *P. phenylpyruvicus* and *P. pulmonis*

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>1</th>
<th>2*</th>
<th>3</th>
<th>4</th>
<th>5*</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acid from glucose</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mannitol</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Xylose</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Arabinose</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ethylene glycol</td>
<td>+</td>
<td>17†</td>
<td>+</td>
<td>+</td>
<td>4</td>
<td>+</td>
</tr>
<tr>
<td>Urease</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nitrate reductase</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nitrite reductase</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tween 80 hydrolyase</td>
<td>+</td>
<td>17†</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Phenylalanine</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>Deferrioxamine</td>
<td>-</td>
<td>1‡</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Susceptibility</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Growth at 35 °C</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

*Where result is not the same for all strains studied, the number of positive strains is indicated.
†Of the 18 strains studied, only UCL-NF 1590 is negative.
‡Type strain is positive.

Taxa: 1, *P. cibarius* LMG 7085; 2, *P. faecalis* (n=18); 3, *P. immobilis* ATCC 43116T; 4, *P. ninivinaris* CCUG 39521; 5, *P. phenylpyruvicus* (n=7); 6, *P. pulmonis* (n=8).
The following compounds are not utilized as sole carbon sources: L-arbutin, cellobiose, D-galactose, gluconate, maltose, D-mannose, \(\alpha\)-melibiose, L-rhamnose, D-ribose, sucrose, salicin, trehalose, D-xylene, adonitol, L-inositol, D-sorbitol, glycerol, D-fructose, D-mannitol, maltitol, putrescine, \(trans\)-aconitate, mesaconate, adipate, azelate, itaconate, suberate, \(\beta\)-alanine, L-phenylalanine, L-serine, L-proline, L-histidine, L-tryptophan, 3-hydroxybenzoate, 4-hydroxybenzoate and phenylacetate. The chromogenic substrates p-nitrophenyl (pNP)-\(\alpha\)-D-glucopyranoside, pNP-\(\beta\)-D-galactopyranoside, ONPG, pNP-\(\beta\)-D-glucuronide, pNP-\(\beta\)-D-glucopyranoside, pNP-\(\beta\)-D-xylopyranoside, 2-deoxyxymidine-5\(^{-}\)pNP-phosphate, L-glutamate-\(\gamma\)-3-carboxy-p-nitroanilide (pNA), L-proline-pNA and pNP-phosphorylcholine are not hydrolysed. Only hydrolysis of L-alanine-pNA and bis-pNP-phosphate is positive.

The type strain is Iso-46\(^T\) (=DSM 14664\(^T\)=CIP 107288\(^T\)), isolated on MacConkey agar from a bioaerosol originating from pigeon faeces.

References

