Idiomarina maris sp. nov., a marine bacterium isolated from sediment

Yan-Jiao Zhang,1† Xi-Ying Zhang,1† Hui-Lin Zhao,1 Ming-Yang Zhou,1 Hui-Juan Li,1,2 Zhao-Ming Gao,1 Xiu-Lan Chen,1 Hong-Yue Dang3 and Yu-Zhong Zhang1

1State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan 250100, PR China
2College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266510, PR China
3Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266555, PR China

A protease-producing marine bacterium, designated CF12-14T, was isolated from sediment of the South China Sea. Phylogenetic analysis of the 16S rRNA gene sequence revealed that strain CF12-14T formed a separate lineage within the genus Idiomarina (Gammaproteobacteria). The isolate showed the highest 16S rRNA gene sequence similarity with Idiomarina salinarum ISL-52T (94.7%), Idiomarina seosinensis CL-SP19T (94.6%) and other members of the genus Idiomarina (91.9–94.6%). Cells were Gram-negative, aerobic, flagellated, straight or slightly curved, and often formed buds and prosthæceae. Strain CF12-14T grew at 4–42 °C (optimum 30–35 °C) and with 0.1–15 % (w/v) NaCl (optimum 2–3 %). The isolate reduced nitrate to nitrite and hydrolysed DNA, but did not produce acids from sugars. The predominant cellular fatty acids were iso-C15:0 (27.4 %), iso-C17:0 (16.0 %) and iso-C17:1ω9c (15.8 %). The major polar lipids were phosphatidylethanolamine, diphasphatidylglycerol and phosphatidylglycerol. The major respiratory quinone was ubiquinone 8. The DNA G+C content was 50.4 mol%. The phylogenetic, phenotypic and chemotaxonomic data supported the conclusion that CF12-14T represents a novel species of the genus Idiomarina, for which the name Idiomarina maris sp. nov. is proposed. The type strain is CF12-14T (=CCTCC AB 208166T=KACC 13974T).

The family Idiomarinaceae, class Gammaproteobacteria, was proposed by Ivanova et al. (2004) according to the phylogenetic relationships of marine Alteromonas-like bacteria. The family formerly contained two genera, Idiomarina and Pseudidiomarina, which were proposed by Ivanova et al. (2000) and Jean et al. (2006), respectively. Recently, the genera Idiomarina and Pseudidiomarina were combined into a single genus Idiomarina, on the basis of the absence of distinguishing phenotypic and chemotaxonomic characteristics (Taborda et al., 2009, 2010). At the time of writing, there were 18 species in the genus: Idiomarina abyssalis (type species) and I. zobellii (Ivanova et al., 2000), I. baltica (Brettar et al., 2003), I. fontislapidosi and I. ramblicola (Martínez-Cánovas et al., 2004), I. seosinensis (Choi & Cho, 2005), I. homiensis (Kwon et al., 2006), I. taiwanensis (Jean et al., 2006), I. sediminum (Hu & Li, 2007), I. salinarum (Yoon et al., 2007), I. donghaensis and I. maritima (Wu et al., 2009), I. marina and I. tainanensis (Jean et al., 2009), I. insulsalsa (Taborda et al., 2009), I. aestuarii (Park et al., 2010) and I. xiamenensis (Wang et al., 2011). All members of the genus Idiomarina possess characteristically high contents of iso-branched cellular fatty acids and have been isolated from saline environments (Ivanova et al., 2004; Jean et al., 2006; Taborda et al., 2009). Specifically, I. salinarum was isolated from a marine solar saltern, I. seosinensis was isolated from hypersaline water of a solar saltern and I. abyssalis was isolated from deep seawater (NW Pacific Ocean).

In the course of screening protease-producing bacteria from marine samples, a member of the family Idiomarinaceae, strain CF12-14T, was isolated from a deep-sea sediment sample of the South China Sea (Zhou et al., 2009). The sample was collected using a core sampler at site CF12...
(19° 44.94' N 114° 44.95' E) in the South China Sea at a water depth of 1153 m in August 2007. Isolation and purification of protease-producing strains were done as described previously (Zhou et al., 2009). Strain CF12-14T was routinely cultivated at 30 °C in TYS broth, containing 0.5% tryptone (Oxoid), 0.1% yeast extract (Oxoid) and artificial seawater (ASW: containing 2.75% NaCl, 0.5% MgCl₂, 0.2% MgSO₄, 0.05% CaCl₂, 0.1% KCl, 0.0001% FeSO₄; distilled water; pH 7.0; Smibert & Krieg, 1994), or on TYS agar (1.5% agar), unless otherwise indicated, and was stored at −80 °C in TYS broth supplemented with 16% (v/v) glycerol. I. salinarum DSM 21900T, I. seosinensis DSM 21922T and I. abyssalis DSM 15222T were obtained from the DSMZ (Braunschweig, Germany) and used as reference strains in some experiments. The reference strains were routinely cultivated in TYS broth or on TYS agar at 30 °C (I. salinarum DSM 21900T and I. seosinensis DSM 21922T) or 25 °C (I. abyssalis DSM 15222T).

The Gram-reaction was examined by the non-staining method (Buck, 1982). Cellular morphology and flagella production were observed using transmission electron microscopy (JEM-100 CXII; JEOL). Cells were prepared in broth medium containing 1% tryptone, 0.5% yeast extract and ASW (pH 7.0) at 30 °C for 24 h and negatively stained with 2% phosphotungstic acid. Growth at 4–45 °C was determined in TYS broth. Growth at pH 4.0–13.0 was determined in broth medium containing 0.5% tryptone, 0.1% yeast extract, 1% NaCl and distilled water, with the pH adjusted with 1M HCl or 1M NaOH. Growth with 0–18% (w/v) NaCl was determined in TYS broth with ASW replaced by distilled water and appropriate amounts of NaCl. Growth under anaerobic conditions was determined in marine broth 2216 medium (Difco) at 28 °C for 20 days by using an anaerobic chamber (Forma 1029; Thermo Electron).

Accumulation of poly-β-hydroxyalkanoate was determined by light microscopy after staining with Sudan Black B. Oxidase activity was determined using commercial oxidase test strips (Merck). Catalase activity was detected by bubble production in 3% (v/v) hydrogen peroxide. DNase activity was tested by using DNase test agar (Oxoid) prepared with gentle shaking at 30 °C for 2 days. Physiological and biochemical characteristics were determined using the API ZYM, API 20E and API 20NE systems (bioMérieux) according to the manufacturer’s instructions except that cells were suspended in ASW. The GN2 MicroPlate system (Biolog) was used to determine utilization of various carbon substrates; ASW was used to prepare the inocula.

PCR amplification and sequencing of the 16S rRNA gene of strain CF12-14T were performed as described by Hu & Li (2007). The obtained 16S rRNA gene sequence (1502 bp) was aligned with related sequences retrieved from GenBank using MEGA version 4.0 (Tamura et al., 2007). Phylogenetic trees were generated with the neighbour-joining (Saitou & Nei, 1987) and maximum-parsimony (Fitch, 1971) methods using MEGA. Evolutionary distances were calculated according to the model of Jukes & Cantor (1969). Bootstrap analysis based on 1000 replications was used to estimate the confidence level of the tree topologies.

The genomic DNA G+C content was determined by HPLC (Mesbah et al., 1989) by the Identification Service of the DSMZ. Respiratory lipoquinone analysis was carried out by the Identification Service and B. J. Tindall (DSMZ).

For cellular fatty acid analysis, cells were prepared in TYS broth for 24 h at 30 °C (strain CF12-14T, I. salinarum DSM 21900T and I. seosinensis DSM 21922T) or 25 °C (I. abyssalis DSM 15222T). Cellular fatty acid methyl esters were obtained from lyophilized cells (approx. 140 mg) by saponification, methylation and extraction according to the protocol of the Sherlock Microbial Identification System (MIDI), separated by GC (Hewlett Packard 6890) and identified with Sherlock Microbial Identification System software (version 4.5 and the TSBA40 database) at the Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, PR China.

Polar lipid analysis of strain CF12-14T and I. abyssalis DSM 15222T was performed by two-dimensional TLC. Polar lipids were extracted according to Komagata & Suzuki (1987) and separated on Kieselgel 60 F₂₅₄ plates (10 x 10 cm; Merck) (Collins & Jones, 1980). The solvent for the first dimension was chloroform/methanol/water (65:25:4, by vol.) and that for the second dimension was chloroform/methanol/acetic acid/water (80:12:15:4, by vol.). Lipid spots were visualized by spraying with 10% molybdo-phosphoric acid in ethanol followed by heating at 110 °C for 15 min and further characterized by spraying with specific reagents, including ninhydrin (aminolipids), Zinzadze reagent (phospholipids) and anisaldehyde/sulfuric acid (glycolipids).

Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain CF12-14T belonged to the family Idiomarinaceae in the class Gammaproteobacteria. Strain CF12-14T had highest 16S rRNA gene sequence similarities with I. salinarum ISL-52T (94.7%), I. seosinensis CL-SP19T (94.6%) and other members of the genus Idiomarina (91.9–94.6%). Sequence similarities with members of genera outside the family Idiomarinaceae were <91.9%. The neighbour-joining tree (Fig. 1) showed that strain CF12-14T belonged to the cluster comprising the genus Idiomarina (100% bootstrap support) and formed a separate lineage within the cluster. The maximum-parsimony tree exhibited a similar tree topology (data not shown). Thus, it is proposed that strain CF12-14T represents a novel species within the genus Idiomarina. Furthermore, in accordance
with its phylogenetic position, strain CF12-14T displayed a distinctive pattern of signature nucleotides at various positions of the 16S rRNA gene sequence as compared with the three rRNA groups described for the genus \textit{Idiomarina} (Taborda et al., 2009; Wang et al., 2011; Supplementary Table S1, available in IJSEM Online), and hence could be assigned to rRNA group 4 of the genus \textit{Idiomarina} (Fig. 1).

The major cellular fatty acids of strain CF12-14T were iso-C\textsubscript{15}:0 (27.4 %), iso-C\textsubscript{17}:0 (16.0 %), iso-C\textsubscript{17}:1\text{ c}9\text{ c} (15.8 %), iso-C\textsubscript{15}:0\text{ 3-OH} (6.2 %) and C\textsubscript{18}:1\text{ c}7\text{ c} (6.1 %) (Table 1). This predominance of iso-branched fatty acids has been found in members of the genus \textit{Idiomarina} (Ivanova et al., 2000, 2004; Brettar et al., 2003; Donachie et al., 2003; Martinez-Cánovas et al., 2004; Choi & Cho, 2005; Jean et al., 2006; Kwon et al., 2006; Hu & Li, 2007; Yoon et al., 2007; Wu et al., 2009; Taborda et al., 2009; Park et al., 2010; Wang et al., 2011); however, strain CF12-14T could be differentiated from other members of the genus \textit{Idiomarina} as it contained iso-C\textsubscript{15}:0\text{ 3-OH} (6.2 %). Strain CF12-14T possessed three major polar lipids, i.e. phosphatidylethanolamine, diphosphatidylglycerol and phosphatidylglycerol, which were in accordance with the genus \textit{Idiomarina} (Taborda et al., 2009). The isolate also contained minor amounts of three phospholipids and an unknown aminophospholipid (Supplementary Fig. S1, available in IJSEM Online). The DNA G + C content was 50.4 mol\%, which was in the range (45.0–56.4 mol\%) reported for the genus \textit{Idiomarina}. The major respiratory quinone of strain CF12-14T was ubiquinone 8, as observed for the genus \textit{Idiomarina} (Taborda et al., 2009). Overall, the above chemotaxonomic data confirmed the assignment of strain CF12-14T to the genus \textit{Idiomarina}.

Cells of strain CF12-14T were Gram-negative, flagellated, straight or slightly curved, and able to produce buds and prosthecate (Fig. 2). Other phenotypic characteristics of strain CF12-14T, including morphological, physiological and biochemical data, are given in the species description and Table 2. CF12-14T exhibited many phenotypic characteristics commonly exhibited by the genus \textit{Idiomarina}, such as

\[\text{Fig. 1. Neighbour-joining phylogenetic tree based on 16S rRNA gene sequences showing the phylogenetic position of strain CF12-14T with members of the genus \textit{Idiomarina} and some related genera in the class Gammaproteobacteria. Bootstrap values (\geq 70 \%) based on 1000 replicates are shown at branch nodes. Bar, 0.01 substitutions per nucleotide position.} \]

\[\text{Table 1. Cellular fatty acid compositions of strain CF12-14T and related \textit{Idiomarina} species} \]

<table>
<thead>
<tr>
<th>Fatty acid (%)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>C\textsubscript{14}:0</td>
<td>–</td>
<td>–</td>
<td>1.4</td>
<td>–</td>
</tr>
<tr>
<td>C\textsubscript{15}:0</td>
<td>–</td>
<td>1.1</td>
<td>3.4</td>
<td>1.4</td>
</tr>
<tr>
<td>C\textsubscript{16}:0</td>
<td>2.9</td>
<td>4.3</td>
<td>8.3</td>
<td>8.1</td>
</tr>
<tr>
<td>C\textsubscript{17}:0</td>
<td>2.3</td>
<td>3.8</td>
<td>3.0</td>
<td>4.0</td>
</tr>
<tr>
<td>C\textsubscript{18}:0</td>
<td>3.5</td>
<td>1.5</td>
<td>2.3</td>
<td>3.1</td>
</tr>
<tr>
<td>iso-C\textsubscript{11}:0</td>
<td>–</td>
<td>3.1</td>
<td>2.0</td>
<td>1.9</td>
</tr>
<tr>
<td>iso-C\textsubscript{13}:0</td>
<td>–</td>
<td>1.9</td>
<td>1.3</td>
<td>1.1</td>
</tr>
<tr>
<td>iso-C\textsubscript{15}:0</td>
<td>27.4</td>
<td>18.3</td>
<td>34.0</td>
<td>23.7</td>
</tr>
<tr>
<td>iso-C\textsubscript{16}:0</td>
<td>–</td>
<td>2.7</td>
<td>1.2</td>
<td>1.1</td>
</tr>
<tr>
<td>iso-C\textsubscript{17}:0</td>
<td>16.0</td>
<td>15.8</td>
<td>8.4</td>
<td>12.2</td>
</tr>
<tr>
<td>C\textsubscript{17}:0\text{ cyclo}</td>
<td>–</td>
<td>2.1</td>
<td>5.5</td>
<td>3.1</td>
</tr>
<tr>
<td>iso-C\textsubscript{11}:0\text{ 3-OH}</td>
<td>5.0</td>
<td>5.4</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>iso-C\textsubscript{13}:0\text{ 3-OH}</td>
<td>–</td>
<td>3.9</td>
<td>3.7</td>
<td>4.2</td>
</tr>
<tr>
<td>iso-C\textsubscript{15}:0\text{ 3-OH}</td>
<td>6.2</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>iso-C\textsubscript{17}:1\text{ c}9\text{ c}</td>
<td>15.8</td>
<td>16.7</td>
<td>5.9</td>
<td>14.1</td>
</tr>
<tr>
<td>iso-C\textsubscript{15}:1\text{ F}</td>
<td>3.4</td>
<td>4.5</td>
<td>3.8</td>
<td>2.9</td>
</tr>
<tr>
<td>Summed feature 3*</td>
<td>3.4</td>
<td>2.6</td>
<td>1.6</td>
<td>1.3</td>
</tr>
<tr>
<td>C\textsubscript{17}:1\text{ c}9\text{ c}</td>
<td>–</td>
<td>2.1</td>
<td>–</td>
<td>1.4</td>
</tr>
<tr>
<td>C\textsubscript{18}:1\text{ c}9\text{ c}</td>
<td>6.1</td>
<td>3.5</td>
<td>1.6</td>
<td>4.5</td>
</tr>
<tr>
<td>11-Methyl C\textsubscript{18}:1\text{ c}7\text{ c}</td>
<td>–</td>
<td>–</td>
<td>1.7</td>
<td>–</td>
</tr>
<tr>
<td>C\textsubscript{18}:1\text{ c}9\text{ c}</td>
<td>2.0</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

*Summed features represent two or three fatty acids that cannot be separated by the Microbial Identification System. Summed feature 3 consisted of C\textsubscript{16}:1\text{ c}7\text{ c} and/or iso-C\textsubscript{15}:0\text{ 2-OH}.

Y.-J. Zhang and others

International Journal of Systematic and Evolutionary Microbiology 62

372
as a poor ability to utilize carbohydrates, broad ranges of temperature and NaCl concentrations for growth, the requirement of NaCl for growth, the absence of arginine dihydrolase activity, and the presence of oxidase and catalase activities (Ivanova et al., 2004; Jean et al., 2006; Taborda et al., 2009). However, the isolate also differed from the reference strains in a combination of some phenotypic characteristics, including production of buds and prosthecæ, temperature range and optimum for growth, growth with 15 % (w/v) NaCl, hydrolysis of different substrates, enzyme production (API ZYM), carbon source utilization pattern (Biolog), susceptibility to kanamycin and genomic DNA G+C content.

On the basis of 16S rRNA gene sequence analysis, and chemotaxonomic and phenotypic characterization, strain CF12-14T should be assigned to the genus *Idiomarina* as a representative of a novel species, for which the name *Idiomarina maris* sp. nov. is proposed.

Description of *Idiomarina maris* sp. nov.

Idiomarina maris (ma’tis, L. gen. n. maris of the sea, isolated from sediment of the South China Sea).

Cells are Gram-negative, straight or slightly curved rods. Cells can produce buds and prosthecæ. Motile with a polar flagellum. Oxidase- and catalase-positive. Colonies are circular, slightly convex, white to light yellow and about 1.0–1.5 mm in diameter after 48 h at 30 °C. Cells are approximately 0.3–0.6 μm wide and 0.8–2.4 μm long. No endospores are formed. Accumulation of poly-β-hydroxy-alkanoate is not observed. Growth occurs at 4–42 °C, good growth is observed at 25–40 °C and optimum growth is observed at 30–35 °C. Growth occurs with 0.1–15.0 % (w/v) NaCl (optimum 2.0–3.0 %), but not with 0 or 18.0 % NaCl, and at pH 6.0–11.5 (optimum pH 8.0–9.5). Anaerobic growth is not observed. Hydrolyses casein, DNA and Tween 40 but not aesculin (API 20NE), glycerol, and Tween 80. Growth occurs at 4–42 °C and optimum growth is observed at 25–30 °C. Cells are approximately 0.3–0.5 μm wide and 1.0–1.5 mm long after 48 h at 30 °C. Cells are Gram-negative and oxidase-positive, hydrolyse DNA and reduce nitrate to nitrite. None of the strains hydrolyse starch or produce arginine dihydrolase. +, Positive; w, weakly positive; −, negative.

Table 2. Differential characteristics of strain CF12-14T and closely related members of the genus *Idiomarina*

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buds and prosthecae</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Temperature for growth (°C):</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>4–42</td>
<td>4–42</td>
<td>4–40</td>
<td>4–30</td>
</tr>
<tr>
<td>Growth with 15 % (w/v) NaCl*</td>
<td>+</td>
<td>−</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Hydrolysis of:*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Casein</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>Aesculin</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Gelatin</td>
<td>+</td>
<td>−</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>API ZYM*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trypsin</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Acid phosphatase</td>
<td>W</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Naphthol-AS-BI-phosphohydrolase</td>
<td>W</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Biolog*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d-Glucuronic acid</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>L-Alanine</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>L-Glutamic acid</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>L-Leucine</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Glycerol</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Susceptibility to kanamycin*</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>DNA G+C content (mol%)</td>
<td>50.4</td>
<td>53.9</td>
<td>45.0</td>
<td>50.4</td>
</tr>
</tbody>
</table>

Data from this study.
not produce acid from glucose, mannitol, inositol, sorbitol, rhamnose, sucrose, melibiose, amygdalin or arabinose and does not utilize citrate. With API 20NE, does not assimilate glucose, arabinose, mannose, mannitol, N-acetylglucono-
maltose, gluconate, decanoate, adipic acid, malic acid, citrate or phenylacetic acid. With the GN2 MicroPlate
system, utilizes only l-leucine (30 °C for 24 h). Sensitive to
(µg per disc) carbenicillin (100), chloramphenicol (30),
ampicillin (10), cefazolin (30), gentamicin (10), kanamycin
(30), streptomycin (10) and nalidixic acid (30), but
resistant to vancomycin (30), lincomycin (2), doxycycline
hydrochloride (30), tetracycline (30) and minocycline (30).
Ubiquinone 8 is the major respiratory quinone. The major
fatty acids are iso-C15:0, iso-C17:0 and iso-C17:1ω9c. The
major polar lipids are phosphatidylethanolamine, diphos-
phatidylglycerol and phosphatidylglycerol.

The type strain is CF12-14T (=CCTCC AB 208166T
=KACC 13974T), isolated from deep-sea sediment of the
South China Sea. The DNA G+C content of the type
strain is 50.4 mol%.

Acknowledgements
We especially thank Dr J. P. Euzey for his help in naming the novel
species. The sediment samples were collected during the 2007 South
China Sea Open Cruise by R/V Shiyan 3, South China Sea Institute of
Oceanology, CAS. This study was supported by Hi-Tech Research
and Development Program of China (2007AA091903 and 2007AA021306),
COMRA Program (DYYX-115-02-2-6 and DYYX-115-02-2-20) and
the National Natural Science Foundation of China (40776032).

References
Antibiotic susceptibility testing by a standardized single disk method.
Am J Clin Pathol 45, 493–496.
nov., a marine bacterium with a high optimum growth temperature
isolated from surface water of the central Baltic Sea. Int J Syst Evol
Microbiol 53, 407–413.
Buck, J. D. (1982). Nonstaining (KOH) method for determination of
993.
isolated from hypersaline water of a solar saltern in Korea. Int J Syst
Collins, M. D. & Jones, D. (1988). Lipids in the classification and
identification of coryneform bacteria containing peptidoglycans based
Donachie, S. P., Hou, S., Gregory, T. S., Malahoff, A. & Alam, M.
(2003). Idiomarina lothiiensis sp. nov., a halophilic ψ-Proteobacterium
from the Lo‘ihi submarine volcano, Hawai‘i. Int J Syst Evol Microbiol
53, 1873–1879.
416.
a marine bacterium isolated from coastal sediments of Luoyuan Bay in
Ivanova, E. P., Romanenko, L. A., Chun, J., Matte, M. H., Matte, G. R.,
Mikhailov, V. V., Svetashev, V. I., Hug, A., Maugel, T. & Colwell, R. R.
bacteria from the Pacific Ocean, including descriptions of two species,
Idiomarina abyssalis sp. nov. and Idiomarina zobelli sp. nov. Int J Syst
ips among marine Alteromonas-like proteobacteria: emended
description of the family Alteromonadaceae and proposal of Pseudo-
alteromonadaceae fam. nov., Colwelliellaceae fam. nov., Shewanellacae
fam. nov., Moritellaceae fam. nov., Ferrimonadaceae fam. nov., Idio-
marinaceae fam. nov. and Psychromonadaceae fam. nov. Int J Syst Evol
Microbiol 54, 1773–1788.
taiwanensis gen. nov., sp. nov., a marine bacterium isolated from
shallow coastal water of An-Ping Harbour, Taiwan, and emended
description of the family Idiomarinaceae. Int J Syst Evol Microbiol 56,
899–905.
(2009). Pseudidiomarina marina sp. nov. and Pseudidiomarina
taiwanensis sp. nov. and reclassification of Idiomarina homiensis and
Idiomarina salinarum as Pseudidiomarina homiensis comb. nov. and
Pseudidiomarina salinarum comb. nov., respectively. Int J Syst Evol
In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by
Kwon, S.-W., Kim, B.-Y., Weon, H.-Y., Baek, Y.-K., Koo, B.-S. & Go, S.-J.
(2006). Idiomarina homiensis sp. nov., isolated from seashore
Martinez-Cano, M. J., Bejar, V., Martinez-Checa, F., Paez, R. &
Quesada, E. (2004). Idiomarina fontispadiopsis sp. nov. and Idiomarina
ramblica sp. nov., isolated from inland hypersaline habitats in Spain.
measurement of the G+C content of deoxyribonucleic acid by high-
C. N. (2010). Pseudidiomarina aestuarii sp. nov., a marine bacterium
isolated from shallow coastal seawater. Int J Syst Evol Microbiol 60,
2071–2075.
In Methods for General and Molecular Bacteriology, pp. 607–654. Edited
Washington, DC: American Society for Microbiology.
Taborda, M., Antunes, A., Tiago, I., Verissimo, A., Nobre, M. F.
nov., isolated from the soil of a sea salt evaporation pond, proposal to
transfer the species of the genus Pseudidiomarina to the genus
Idiomarina and emended description of the genus Idiomarina. Syst
Taborda, M., Antunes, A., Tiago, I., Verissimo, A., Nobre, M. F.
insulisaldae sp. nov., Idiomarina maritima comb. nov., Idiomarina
sediminum comb. nov., Idiomarina taiwanensis comb. nov. and
Idiomarina taiwanensis comb. nov. In List of New Names and New
Combinations Previously Effectively, but not Validly, Published, Validation

