Pseudoxanthomonas indica sp. nov., isolated from a hexachlorocyclohexane dumpsite

Kirti Kumari, Pooja Sharma, Kshitiz Tyagi and Rup Lal

Department of Zoology, University of Delhi, Delhi-110 007, India

A bacterial strain, designated P15ᵀ, was isolated from the soil of an open hexachlorocyclohexane dumpsite. Comparative sequence analysis showed that strain P15ᵀ displayed high 16S rRNA gene sequence similarities (94.4–97.2%) with members of the genus *Pseudoxanthomonas*. The isolate was most closely related to *Pseudoxanthomonas mexicana* AMX 26Bᵀ (97.2% 16S rRNA gene sequence similarity) and *Pseudoxanthomonas japonensis* 12-3ᵀ (97.2%). DNA–DNA relatedness studies showed unambiguously that strain P15ᵀ represented a novel species that was separate from *P. mexicana* DSM 17121ᵀ (7.7%) and *P. japonensis* DSM 17109ᵀ (9.4%). The predominant cellular fatty acids of strain P15ᵀ were iso-C₁₆:₀ (21.4%), iso-C₁₅:₀ (16.1%), summed feature 9 (comprising iso-C₁₇:₁₀₉c and/or 10-methyl-C₁₆:₀; 14.9%), iso-C₁₁:₀ 3-OH (8.3%) and iso-C₁₄:₀ (7.0%). The polar lipid profile of strain P15ᵀ showed the presence of large amounts of phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol in addition to unknown glycolipids, phospholipids and an amino-group-containing polar lipid. Ubiquinone 8 was found as the major quinone. The polyamine profile showed the presence of spermidine. The DNA G+C content was 62.9 ± 2 mol%. Strain P15ᵀ is described as representing a new member of the genus *Pseudoxanthomonas*, for which the name *Pseudoxanthomonas indica* sp. nov. is proposed. The type strain is P15ᵀ (=MTCC 8596ᵀ=CCM 7430ᵀ).

The genus *Pseudoxanthomonas* (Finkmann et al., 2000) belongs to the family *Xanthomonadaceae* in the order *Xanthomonadales* (Garrity & Holt, 2001). Members of this genus comprise aerobic, Gram-negative, non-spore-forming rods and have been isolated from a variety of habitats such as biofilters (Finkmann et al., 2000), hot springs (Chen et al., 2002), compost (Weon et al., 2006) and soil samples (Thierry et al., 2004; Yang et al., 2005; Chang et al., 2005; Harada et al., 2006). The genus is known for the presence of 3-OH fatty acids as the major hydroxylated components and ubiquinone 8 (Q-8) as the major respiratory quinone (Lee et al., 2008), reduction of nitrite and lack of iso-C₁₃:₀ 3-OH (Thierry et al., 2004), albeit with a few exceptions (Chang et al., 2005; Young et al., 2007; Lee et al., 2008). The genus is currently represented by 13 recognized species: *Pseudoxanthomonas broegbernensis* (Finkmann et al., 2000; Thierry et al., 2004), *P. taiwanensis* (Chen et al., 2002), *P. japonensis* and *P. mexicana* (Thierry et al., 2004), *P. daviidenensis* and *P. koreensis* (Yang et al., 2005), *P. kaohsiungensis* (Chang et al., 2005), *P. suwonensis* (Weon et al., 2006), *P. koreensis* (Harada et al., 2006), *P. dokdonensis* (Yoon et al., 2006; Lee et al., 2008), *P. yeongjuensis* (Yoo et al., 2007), *P. spadix* (Young et al., 2007) and *P. sacheonensis* (Lee et al., 2008).

A soil sample was collected from an open hexachlorocyclohexane dumpsite in north India (27° 00' 24"N 81° 09' 03.8"E), serially diluted and plated on nystatin-amended LB agar (Dadhwal et al., 2009). A dull yellow-coloured colony, designated P15ᵀ, appeared within 36 h of incubation at 28 °C and was purified by repeated streaking on LB agar.

The 16S rRNA gene sequence of strain P15ᵀ was amplified using the 8F and 1492R universal primer set by colony PCR and sequenced as described elsewhere (Kumar et al., 2008; Jit et al., 2008). The sequence thus obtained was assembled manually using Clone Manager version 5. A continuous sequence of 1392 bp of the 16S rRNA gene was obtained and subjected to similarity searches using the sequence match tool of Ribosomal Database Project II (RDP; http://rdp.cme.msu.edu/) and BLAST program of National Center of Biotechnological Information (http://www.ncbi.nlm.nih.gov/). A non-redundant BLASTN search of full sequences in GenBank (Altschul et al., 1990; Benson et al., 1999) and RDP II (Maidak et al., 2001) identified the closest relatives of the isolate. Analysis of the 16S rRNA gene sequence (1392 bp) revealed that strain P15ᵀ showed highest sequence similarity with *P. mexicana* AMX 26Bᵀ (97.2% 16S rRNA gene sequence similarity) and *P. japonensis* 12-3ᵀ (97.2%). The nearly full-length 16S rRNA gene sequence of the isolate showed sequence similarities with the closest relatives of 94.4% (97.2%) with *P. mexicana* AMX 26Bᵀ and *P. japonensis* 12-3ᵀ, respectively. The strain P15ᵀ was most closely related to *P. mexicana* AMX 26Bᵀ (97.2%) and *P. japonensis* DSM 17109ᵀ (9.4%). The predominant cellular fatty acids of strain P15ᵀ were iso-C₁₆:₀ (21.4%), iso-C₁₅:₀ (16.1%), summed feature 9 (comprising iso-C₁₇:₁₀₉c and/or 10-methyl-C₁₆:₀; 14.9%), iso-C₁₁:₀ 3-OH (8.3%) and iso-C₁₄:₀ (7.0%). The polar lipid profile of strain P15ᵀ showed the presence of large amounts of phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol in addition to unknown glycolipids, phospholipids and an amino-group-containing polar lipid. Ubiquinone 8 was found as the major quinone. The polyamine profile showed the presence of spermidine. The DNA G+C content was 62.9 ± 2 mol%. Strain P15ᵀ is described as representing a new member of the genus *Pseudoxanthomonas*, for which the name *Pseudoxanthomonas indica* sp. nov. is proposed. The type strain is P15ᵀ (=MTCC 8596ᵀ=CCM 7430ᵀ).

Abbreviation: RDP, Ribosomal Database Project.

The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain P15ᵀ is EF424397.

A supplementary table and two supplementary figures are available with the online version of this paper.
sequences of strains closely related to the isolate were retrieved for further analysis. The 16S rRNA gene sequence similarity between strain P15\(^T\) and members of the genus *Pseudoxanthomonas* was 94.4–97.2\%. Multiple alignment of these sequences was performed using CLUSTAL_X (Thompson et al., 1997), common gaps were removed and the alignment was checked manually for quality. Pairwise evolutionary distances were calculated using the distance model of Jukes & Cantor (1969) within the TREECON version 1.3b (Van de Peer & De Wachter, 1994). A phylogenetic tree was constructed using the neighbour-joining method of Saitou & Nei (1987) and the resultant tree topology was evaluated by bootstrap analysis with 100 resamplings. Strain P15\(^T\) clustered with members of the genus *Pseudoxanthomonas* and formed a monophyletic clade within the cluster containing *P. mexicana* AMX 26B\(^T\) and *P. japonensis* 12-3\(^T\) (Fig. 1). It is notable that, although the genus *Pseudoxanthomonas* is not monophyletic and the taxonomic situation of this group is subject to future revision, strain P15\(^T\) fell within the cluster that exclusively contained members of the genus *Pseudoxanthomonas*. A similar tree topology was also observed using the

data not shown).

DNA–DNA hybridization was performed between strain P15\(^T\) and *P. mexicana* DSM 17121\(^T\) and *P. japonensis* DSM 17109\(^T\), which were obtained from the DSMZ. Extraction, purification and hybridization of total genomic DNA followed the protocol described by Prakash et al. (2007) and Kumar et al. (2008). The amount of bound probe DNA was calculated using a scintillation counter (1450 LSC Luminescence counter Wallac Microbeta Trilux; PerkinElmer). DNA–DNA relatedness was calculated on the basis of the means of four replicates and ranged from 7.7 to 9.4\%. Pooled standard deviations of all the hybridization experiments were found to vary by up to 12\%. Since all hybridization values were <70\%, the results confirmed that strain P15\(^T\) represented a novel species of the genus *Pseudoxanthomonas*, as recommended for the delineation of species (Wayne et al., 1987; Stackebrandt & Goebel, 1994).

Fatty acid methyl ester analysis was performed as described by Prakash et al. (2007). The fatty acids of strain P15\(^T\) (>1.5\%) were iso-C\(_{16:0}\) (21.4\%), iso-C\(_{15:0}\) (16.1\%),

![Fig. 1. Phylogenetic tree based on nearly complete 16S rRNA gene sequences showing the relationship of strain P15\(^T\) to members of the genus *Pseudoxanthomonas* and related genera. Bootstrap values (>50\%) based on 100 resamplings are shown at branch nodes. *Luteimonas mephitis* B1953\(^T\) was used as an outgroup. Bar, 0.1 substitutions per nucleotide position.](image-url)
summed feature 9 (comprising iso-C_{17:1} \, \text{o9c} and/or 10-methyl C_{16:0} 14.9\%), iso-C_{11:0} 3-OH (8.3\%), iso-C_{14:0} (7.0\%), iso-C_{11:0} (5.0\%), iso-C_{16:1} H (3.5\%), iso-C_{10:0} (3.4\%), iso-C_{12:0} 3-OH (3.4\%), summed feature 3 (comprising C_{16:1} \, \text{o7c} and/or C_{16:1} \, \text{o6c} 3\%), anteiso-C_{15:0} (2.9\%), iso-C_{15:1} F (2.4\%) and C_{16:0} (1.6\%). Strain P15T contained large amounts of iso-C_{15:0} and iso-C_{16:0}, which are also predominant fatty acids in members of other species of the genus *Pseudoxanthomonas*. A comparison of the fatty acid profiles of strain P15T with all members of the genus *Pseudoxanthomonas* is given in Supplementary Table S1 (available in IJSEM Online).

Polar lipid analysis of strain P15T was performed by two-dimensional TLC using 1.0% Premulin as the spray reagent for detection of total lipids under UV (Gupta et al., 2009; Sharma et al., 2010; Nigam et al., 2010). The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol, in addition to small amounts of unknown glycolipids, phospholipids and an amino-group-containing polar lipid (Supplementary Fig. S1). The lipid profile of strain P15T was found to be similar to those of *P. mexicana* and *P. sacheonensis* (Lee et al., 2008) by having phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol as the major lipids; however, the unknown glycolipids and phospholipids found in strain P15T were absent in *P. sacheonensis*.

Quinones were extracted according to the method described by Collins & Jones (1981). Q-8 was found to be the major respiratory quinone. Polymyxins were extracted as described by Busse & Auling (1988) and analysed by TLC (Silica gel 60 F_{254}, 20 x 20 cm; Merck, Germany) and showed the presence of spermidine. The DNA G+C content was calculated by the method described by Gonzalez & Saiz-Jimenez (2002) using realtime PCR (7500; Applied Biosystems) and was found to be 62.9 mol%, which is in accordance with the range described for the genus *Pseudoxanthomonas* (Finkmann et al., 2000; Thierry et al., 2004).

Colonial morphology of strain P15T was studied on LB agar (pH 7.5) after 48 h of incubation at 28 °C. Colonies were dull yellow, circular with entire margins and about 1.5 mm in diameter (range 1–2 mm) after 2 days of incubation. The temperature range for growth was assessed at 10–41 °C. Oxidase activity was tested using oxidase discs from HiMedia. Catalase activity was tested by adding 3% (v/v) hydrogen peroxide solution to colonies grown on LB agar (McCarthy & Cross, 1984). Motility was checked on motility agar (Farmer, 1999). Hydrolysis of gelatin, casein, aesculin and Tween 20 was determined as described by Cowan & Steel (1965). Urease activity was tested in accordance with Christensen (1946). Indole production was tested as described by Smibert & Krieg (1994). β-Galactosidase activity was observed using ONPG discs (HiMedia), according to the manufacturer’s instructions. Citrate utilization was tested on Simmons’ citrate agar (Simmons, 1926). Nitrate reduction was tested as described by Smibert & Krieg (1994). Assimilation of different carbohydrates was tested in basal media (Gordon et al., 1974). Antibiotic sensitivity tests were performed on Muller-Hinton II medium using ready-made Sensi-Discs (HiMedia), containing (µg per disc, unless otherwise stated) amikacin (30), ampicillin (10), chloramphenicol (30), ciprofloxacin (5), gentamicin (10), kanamycin (30), nalidixic acid (30), penicillin G (10 U), polymyxin B (300), rifampicin (5), tetracycline (30) and vancomycin (30). All tests were performed at least in duplicate with strain P15T, *P. mexicana* DSM 17121T and *P. japonensis* DSM 17109T under similar conditions. The results are summarized in Table 1.

The Gram-stain test was performed using a Gram-staining kit (HiMedia). Cell morphology was examined by light and electron microscopy (TEM 269D; Morgagni, Fei) using cells from an exponentially growing culture on LB agar, negatively stained with 0.5% uranyl acetate and air dried (Supplementary Fig. S2).

Strain P15T should be classified as a member of the genus *Pseudoxanthomonas* as it showed an absence of the fatty acid iso-C_{13:0} 3-OH and high 16S rRNA gene sequence similarity with members of the genus *Pseudoxanthomonas*. In addition, the polar lipid pattern, presence of spermidine and Q-8 as the major respiratory quinone further supported the phylogenetic findings. From the data presented here, it is evident that strain P15T exhibits an overall chemotaxonomic profile consistent with those of members of the genus *Pseudoxanthomonas* and represents a novel species. The name *Pseudoxanthomonas indica* sp. nov. is proposed.

Description of *Pseudoxanthomonas indica* sp. nov.

Colonies are dull yellow, smooth and circular (1.5 mm on LB agar after 48 h at 28 °C). Cells are Gram-negative-staining, aerobic rods (1.5 x 0.5 µm) and bear a single polar flagellum. The optimum temperature for growth is 28 °C. Cells are catalase- and oxidase-positive. Hydrolyses ONPG (β-galactosidase), aesculin and Tween 20 but does not hydrolyse gelatin, casein or urea. Indole production is negative. Positive for nitrate reduction. Assimilates D-glucose, D-mannose, N-acetyl D-glucosamine, maltose, (+)-D-galactose, sucrose, D-fructose, lactose, L-histidine and L-proline, but not L-arabinose, D-mannitol, (+)-D-raffinose, L-alanine, L-serine or putrescine. Citrate is not utilized. Sensitive to amikacin, ampicillin, chloramphenicol, ciprofloxacin, gentamicin, kanamycin, nalidixic acid, polymyxin B, rifampicin, tetracycline and vancomycin, but resistant to penicillin G. The predominant cellular fatty acids are iso-C_{16:0}, iso-C_{15:0} summed feature 9 (comprising iso-C_{17:1} \, \text{o9c} and/or 10-methyl C_{16:0}, iso-C_{11:0} 3-OH and iso-C_{14:0}). The polyamine profile shows the presence of spermidine. Q-8 is the major respiratory quinone. The major polar lipids are phosphatidyethanolamine, phosphatidylglycerol and diphosphatidylglycerol, in addition to small amounts of glycolipids, phospholipids and an amino-group-containing polar lipid.
Table 1. Differential morphological and physiological characteristics of strain P15\(^T\) and members of the genus *Pseuadoxanthomonas*

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colony colour</td>
<td>DY</td>
<td>PY</td>
<td>DYDBP</td>
<td>CY</td>
<td>LY</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>W</td>
<td>PY</td>
<td>Y</td>
<td>GY</td>
<td>YDBP</td>
<td>LY</td>
</tr>
<tr>
<td>Motility and flagellation</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Assimilation of:</td>
<td></td>
</tr>
<tr>
<td>D-Glucose</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>L-Arabinose</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D-Mannose</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>D-Mannitol</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>N-Acetyl D-glucosamine</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Maltose</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Citrate</td>
<td>-</td>
</tr>
<tr>
<td>(+)-D-Raffinose</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>ND</td>
<td>-</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
<td>*ND</td>
<td>+</td>
<td>ND</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sucrose</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>ND</td>
<td>-</td>
<td>ND</td>
<td>-</td>
<td>+</td>
<td>*ND</td>
<td>-</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lactose</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>ND</td>
<td>-</td>
<td>ND</td>
<td>-</td>
<td>+</td>
<td>*ND</td>
<td>-</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>L-Histidine</td>
<td>+</td>
<td>V</td>
<td>+</td>
<td>ND</td>
<td>-</td>
<td>ND</td>
<td>-</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>L-Serine</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>ND</td>
<td>+</td>
<td>V</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Putrescine</td>
<td>-</td>
<td>V</td>
<td>+</td>
<td>ND</td>
<td>-</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Enzyme activity</td>
<td></td>
</tr>
<tr>
<td>Oxidase</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>ND</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Catalase</td>
<td>+ (+)</td>
<td>+ ()</td>
<td>-</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>(\beta)-Galactosidase</td>
<td>+</td>
<td>-</td>
<td>()</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Casein hydrolysis</td>
<td>-</td>
<td>+</td>
<td>()</td>
<td>ND</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>ND</td>
<td>+</td>
<td>+</td>
<td>ND</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Urease</td>
<td>-</td>
</tr>
<tr>
<td>Gelatin hydrolysis</td>
<td>-</td>
</tr>
</tbody>
</table>

Data from Thierry et al. (2004).

The type strain, P15\(^T\) (=MTCC 8596\(^T\)=CCM 7430\(^T\)), was isolated from the soil of an open hexachlorocyclohexane dumpsite situated in north India. The DNA G+C content of the type strain is 62.9 ± 2 mol%.

Acknowledgements

K.K., P.S. and K.T. gratefully acknowledge the Council of Scientific and Industrial Research (CSIR) and Department of Biotechnology (DBT), Government of India, for providing research fellowships. This study was supported by the National Bureau of Agriculturally Important Micro-organisms (NBAIM), Indian Council of Agricultural Research (ICAR), Government of India (grant no. 6-2/2008/Dir/NBAIM). We thank Dr J. P. Euzéby for etymological advice.

References

Christensen, W. B. (1946). Urea decomposition as a means of differentiating *Proteus* and para-colon cultures from each other and from *Salmonella* and *Shigella* types. *J Bacteriol* 52, 461–466.

