Mycobacterium europaeum sp. nov., a scotochromogenic species related to the Mycobacterium simiae complex

Enrico Tortoli,1 Erik C. Böttger,2 Anna Fabio,3 Enevold Falsen,4 Zoe Gitti,5 Antonella Grottola,3 Hans-Peter Klenk,6 Roberta Mannino,1 Alessandro Mariottini,7 Massimino Messino,3 Monica Pecorari3 and Fabio Rumpianesi3

1Regional Reference Center for Mycobacteria, Microbiology and Virology Laboratory, Careggi University Hospital, Florence, Italy
2Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
3Laboratory of Microbiology and Virology, Modena University Hospital, Modena, Italy
4Culture Collection University of Göteborg, Department of Clinical Bacteriology, Göteborg, Sweden
5Clinical Microbiology Laboratory, Mycobacteriology Department, University Hospital of Crete, Herakleon, Greece
6DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
7Cytogenetics and Genetics Unit, Careggi University Hospital, Florence, Italy

Four strains isolated in the last 15 years were revealed to be identical in their 16S rRNA gene sequences to MCRO19, the sequence of which was deposited in GenBank in 1995. In a polyphasic analysis including phenotypic and genotypic features, the five strains (including MCRO19), which had been isolated in four European countries, turned out to represent a unique taxonomic entity. They are scotochromogenic slow growers and are genetically related to the group that included Mycobacterium simiae and 15 other species. The novel species Mycobacterium europaeum sp. nov. is proposed to accommodate these five strains. Strain FI-95228T (=DSM 45397T = CCUG 58464T) was chosen as the type strain. In addition, a thorough revision of the phenotypic and genotypic characters of the species related to M. simiae was conducted which leads us to suggest the denomination of the ‘Mycobacterium simiae complex’ for this group.

A unique genetic signature characterizes a limited number of slowly growing non-tuberculous mycobacteria; it is represented by a 12 nt deletion in the 16S rRNA gene starting at Escherichia coli position 459. About 20 years ago, when genetic sequencing of the 16S rRNA gene began to be used for the taxonomic characterization of mycobacteria, Mycobacterium simiae appeared to be the only slowly growing mycobacterial species presenting the aforesaid deletion (Rogall et al., 1990; Kirschner et al., 1993b). Mycobacterium interjectum (Springer et al., 1993) was the first species to be newly described that was recognized to share this genetic marker with M. simiae and, in subsequent years, the group of M. simiae-like organisms has steadily extended and includes 16 species at present (Böttger et al., 1993; Fanti et al., 2004; Floyd et al., 1996, 2000; Haas et al., 1997; Karassova et al., 1965; Levi et al., 2003; Meier et al., 1993; Pourahmad et al., 2008; Selvarangan et al., 2004; Springer et al., 1993, 1996b; Torkko et al., 2002; Tortoli et al., 2005a; Turenne et al.,...
2004a, b). Similarity of the 16S rRNA gene sequence, along with a number of shared phenotypic features, supports the hypothesis that these species belong to a homogeneous group characterized by close phylogenetic relatedness.

The characterization of several slowly growing strains presenting the genetic characteristic of *M. simiae* allowed us to propose a novel species, and provided the opportunity for a re-examination of this unique group of mycobacteria in light of a polyphasic approach including the analysis of multiple genetic targets.

Mycobacterium isolates

Four strains had been isolated independently between 1995 and 2009 in various countries of Europe (Table 1). Three of them had been grown from sputum: two (FI-95228^T and FI-09129) from Italian patients, in different Italian hospitals, and one (GN10643) from a Greek patient. Strain CCUG 52298 had been isolated in Sweden from a jaw gland of a subject with neck adenopathy. No information is available on the origins of the fifth strain, MCRO19 (Springer et al., 1996a).

Biochemical and cultural tests

Major biochemical tests (Kent & Kubica, 1985) recommended for the speciation of mycobacteria were performed as described previously; they included niacin accumulation, nitrate reduction, Tween 80 hydrolysis (10 days), arylsulfatase (3 days), urease, β-glucosidase, tellurite reduction and catalase.

The five strains investigated presented identical biochemical patterns characterized by negative results for the majority of the tests performed. Tests for tellurite reduction, thermostable catalase and production of foam >45 mm in the semiquantitative catalase test were, in contrast, uniformly positive.

All the strains grew yellow, smooth, scotochromogenic colonies on solid media (Loewenstein–Jensen, Middlebrook 7H11) after about 3 weeks of incubation at 37 °C. Growth was slower at 30 °C and absent at 42 °C. Growth of the strains was not inhibited on selective media [supplemented separately with (mL^{−1}) 500 µg *p*-nitrobenzoate, 5 µg thiophene-2-carboxylic hydrazide, 10 µg thiacetazone, 500 µg hydroxylamine, 1 µg isoniazid and 250 µg oleate], while growth was not achieved on MacConkey agar without crystal violet.

The cells were characterized by acid-fastness and bacillary morphology; spores or branching production were not observed.

Lipid analyses

For identification of the mycolic acids present in the cell wall, two-dimensional TLC was carried out following the standard procedure (Minnikin et al., 1975). The two strains selected for this test (FI-95228^T and GN10643) revealed the presence of α-mycolates, ketomycolates and wax esters, a pattern identical to those of *Mycobacterium parascrofulaceum* and *Mycobacterium parmaense* and very close to those of *M. simiae* and related species (*Mycobacterium genavense*, *Mycobacterium heidelbergense* and *Mycobacterium intermedium*). Although the latter three species also possess α’-mycolates, they share with the test strains the presence of wax esters (carboxymycolates and 2-eicosanol homologues) and the absence of methoxymycolates.

HPLC analysis was performed as reported before. Cell-wall lipids were saponified and chloroform-extracted, derivatized to UV-absorbing esters and then separated with a gradient of methanol and methylene chloride (CDC, 1996). The five strains presented a common pattern characterized by the presence of three clusters of peaks with the first, more prominent, emerging clearly earlier than the others (Fig. 1). This pattern, which grossly resembles those of *Mycobacterium intracellulare* and *Mycobacterium scrofulaceum*, is also shared by several *M. simiae*-like species (*M. interjectum, M. parascrofulaceum* and *M. parmaense*).

Antimicrobial susceptibility

MICs were determined using a commercially available microdilution method (MAISlow; Sensititer) including the major drugs with potential activity against slowly growing non-tuberculous mycobacteria: amikacin, streptomycin, ciprofloxacin, moxifloxacin, clarithromycin, ethambutol, linezolid, minocycline, rifampicin, rifabutin and trimethoprim-sulfamethoxazole. The strains were characterized by susceptibility to all of the antimicrobials tested except for quinolones, which were consistently ineffective. The MICs of clarithromycin and rifamycins were particularly low.

Table 1. Microbiological and patient clinical information for strains of Mycobacterium europaeum sp. nov.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Age (years)</th>
<th>Sex</th>
<th>Microscopy</th>
<th>Culture</th>
<th>Disease</th>
<th>Treatment</th>
<th>Location</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>FI-95228<sup>T</sup></td>
<td>81</td>
<td>M</td>
<td>+</td>
<td>+</td>
<td>Cavitary pneumopathy</td>
<td>NK</td>
<td>Italy, Florence</td>
<td>1995</td>
</tr>
<tr>
<td>CCUG 52298</td>
<td>28</td>
<td>F</td>
<td>NK</td>
<td>NK</td>
<td>Jaw gland adenopathy</td>
<td>NK</td>
<td>Sweden</td>
<td>2004</td>
</tr>
<tr>
<td>FI-09129</td>
<td>37</td>
<td>M</td>
<td>–</td>
<td>+</td>
<td>None</td>
<td>No</td>
<td>Italy, Modena</td>
<td>2009</td>
</tr>
<tr>
<td>GN10643</td>
<td>88</td>
<td>M</td>
<td>−</td>
<td>+</td>
<td>Pneumonia</td>
<td>Anti-TB (2 months)</td>
<td>Greece</td>
<td>2009</td>
</tr>
</tbody>
</table>
Double-strand sequences from the five strains included in the study were determined using BigDye Terminator chemistry on an AB3730 DNA sequencer (Applied Biosystems) following the standard protocol of the supplier. The regions investigated included the 16S rRNA gene (Kirschner et al., 1993a), the ITS1 spacer interposed between the 16S and 23S rRNA genes (Roth et al., 1998) and the hypervariable regions of the hsp65 (McNabb et al., 2004) and rpoB (Adékambi et al., 2003) genes.

The five test strains were characterized by identical sequences in the 16S rRNA gene (1475 bp). In ITS1, three sequevars were present, with the sequence of strain FI-95228\(^T\) differing by one base from that of MCRO19 and by three bases from the sequence shared by the other three strains. The two sequevars characterizing hsp65 differed in only one nucleotide and were shared by three and two strains, respectively. In the 711 bp region of the rpoB gene, three sequevars were detected, one shared by three strains (including strain FI-95228\(^T\)), which differed in two bases from the sequence of FI-09129 (similarity 99.7\%) and in 17 bases from that of CCUG 52298 (97.6\%). Once the combinations of sequevars were compared, only two strains, GN10643 and MCRO19, were identical in all the regions investigated.

To determine the similarity with known species, the sequences of the five test strains were aligned using BLAST software (Altschul et al., 1997) with entries present in the GenBank database. In the 16S rRNA gene, the species presenting the highest similarity with the sequence of the test strains was *M. parascrofulaceum* (six mismatches in 1418 bp for the type strain; 99.6\% similarity).

Phylogenetic analysis

Phylogenetic analysis was conducted for all the genetic regions investigated, after trimming the sequences to start and finish at the same position; *Mycobacterium tuberculosis* ATCC 27294\(^T\) was chosen as an outgroup. The neighbour-joining method (Saitou & Nei, 1987), supported by the **MEGA** 4.1 software (Tamura et al., 2007), was used for the construction of phylogenetic trees; 1000 bootstrap replications were implemented.

As expected, in the tree based on the 16S rRNA gene (Fig. 2), the species of the *M. simiae* group clustered together and were clearly separate from other species. Dendrograms reconstructed from ITS1, hsp65 and rpoB sequences were characterized by very poor robustness (a large number of nodes presented bootstrap support <50\%), thus revealing little phylogenetic value (not shown). To try to overcome the limited confidence of the topology of these trees and to elucidate better the relatedness of the *M. simiae*-like species, the sequences of the 16S rRNA gene, ITS1, hsp65 and rpoB were concatenated into a 2933 bp sequence (Devulder et al., 2005; Stackebrandt et al., 2002). To make this feasible, the full set of species related to *M. simiae* was completed by determining and depositing in GenBank a number of sequences for type strains that were not yet represented.

The phylogenetic relatedness among the species of the *M. simiae* group appeared much more evident once the concatenated sequences were compared (Fig. 3). Within the phylogenetic tree, two major clades were clearly recognizable. Interestingly, the variability present at the level of phenotype was in agreement with the two phylogenetic branches. The first cluster (A) included the species *Mycobacterium florentinum, M. stomatopaeia, M. genavense, M. triplex, M. lentiflavum, M. sherrisii, M. simiae* and *M. montefiores* that were characterized by a unique three-clustered HPLC mycolic acid pattern (Fig. 1) and by extreme drug-resistance (Cingolani et al., 2000; Rastogi et al., 1992; Tortoli, 2003, 2006; Tortoli et al., 2002, 2005a) (no susceptibility data are available for *M. montefiores* or *M. stomatopaeia*), *M. parascrofulaceum* and the five strains described in this study, which constituted the second cluster (B), were characterized, in contrast, by HPLC profile similar to those of the *Mycobacterium avium* complex (Fig. 1) and susceptibility to most of the anti-mycobacterial drugs (Turenne et al., 2004b). The remaining six species, found on isolated branches, were more heterogeneous at the phenotypic level.

The idea of including genetically related, not easily differentiable, mycobacteria (e.g. *M. avium* and *Mycobacterium intracellulare* or *Mycobacterium terrae* and *Mycobacterium nonchromogenicum*) in a single group, or complex, has been
very successful in the past. A thorough analysis of sequences of the 16S rRNA gene, ITS1, hsp65 and rpoB of the strains described in this study reveals clear relatedness with 16 other mycobacterial species which, along with the novel species represented by these strains, constitute a homogeneous group for which we suggest the name 'Mycobacterium simiae complex'. The introduction of the M. simiae complex, encompassing all the species related to M. simiae, besides being supported by genotypic and phenotypic similarities, would represent a simplification that will certainly be welcomed by clinicians.

Description of Mycobacterium europaeum sp. nov.

Mycobacterium europaeum (eu.ro.pae’um. L. neut. adj. europaeum pertaining to Europe, as the first five known strains were isolated in four European countries).

Cells are acid-fast and Gram-stain-positive, not motile and do not produce spores. Colonies are smooth and strongly yellow pigmented and grow on egg- and agar-based solid media for mycobacteria after 2–3 weeks of incubation at 37 °C. Major biochemical features include positive catalase

Fig. 2. Phylogenetic tree based on 16S rRNA sequences constructed using the neighbour-joining method (bootstrapped 1000 times). Bootstrap values >50% are given at nodes. Bar, 0.005 substitutions per nucleotide position.

Fig. 3. Phylogenetic tree based on concatenated sequences (16S rRNA+ITS1 + hsp65 + rpoB) constructed using the neighbour-joining method (bootstrapped 1000 times). Bootstrap values ≥90% are given at nodes. M. tuberculo-sis ATCC 27294T was used as the out-group. Bar, 0.005 substitutions per nucleotide position. A and B represent clades described in the text.
tests, both semiquantitative (>45 mm) and after incubation at 68°C, and tellurite reduction. Tests for nitrate reduction, Tween 80 hydrolysis, 3 day arylsulfatase and urease are negative; they are not useful for a certain differentiation from M. simiae and other related species (Table 2). The antimicrobial pattern is characterized by susceptibility to amikacin, clarithromycin, linezolid and rifampicins, and by resistance to quinolones. The mycolic acid composition is similar to that of M. simiae-like species but can be distinguished by the lack of α'-mycolates. The HPLC pattern can be confused with those of M. florentinum, M. parascrofulaceum and M. parascrofulaceum. Unique genetic sequences are present in the 16S rRNA gene, ITS1, hsp65 and rpoB.

The type strain is FI-95228T (=DSM 45397T =CCUG 58464T).

Acknowledgements

We thank Mag Lafferty for linguistic revision of the manuscript.

References

Table 2. Comparison of variable phenotypic characters among the species belonging to the M. simiae complex

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Niacin accumulation</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>ND</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>ND</td>
</tr>
<tr>
<td>Nitrate reduction</td>
<td>–</td>
<td>ND</td>
<td>–</td>
<td>–</td>
<td>ND</td>
<td>–</td>
<td>ND</td>
<td>±</td>
</tr>
<tr>
<td>Tween 80 hydrolysis (10 days)</td>
<td>–</td>
<td>–</td>
<td>±</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>ND</td>
<td>–</td>
<td>–</td>
<td>ND</td>
<td>–</td>
<td>ND</td>
</tr>
<tr>
<td>Tellurite reduction</td>
<td>+</td>
<td>+</td>
<td>ND</td>
<td>–</td>
<td>ND</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>ND</td>
<td>+</td>
<td>V</td>
<td>ND</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>±</td>
<td></td>
</tr>
<tr>
<td>Urease</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Catalase (>45 mm of foam)</td>
<td>+</td>
<td>–</td>
<td>V</td>
<td>+</td>
<td>V</td>
<td>–</td>
<td>–</td>
<td>ND</td>
<td>–</td>
<td>ND</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Pigmentation*</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Growth at 30°C</td>
<td>+</td>
<td>–</td>
<td>ND</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Growth at 37°C</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>ND</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Growth at 43°C</td>
<td>–</td>
<td>ND</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>TLC pattern†</td>
<td>1</td>
<td>4</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>ND</td>
</tr>
<tr>
<td>HPLC pattern‡</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
</tbody>
</table>

*3, Scotochromogenic; SP, Scotochromogenic or photochromogenic; N, non-chromogenic; SPN, Scotochromogenic, photochromogenic or non-chromogenic.
†1, α-Mycobacteria; 2, α'-mycolates; 3, methoxymycolates; 4, ketomycolates; 5, epoxymycolates; 6, wax esters; 7, omega 1-methoxymycolates.
§A, M. avium complex-like; B, M. simiae-like; C, single late cluster; D, M. malmoense-like; E, unique.

