The bacterial genus *Yersinia* belongs to the family *Enterobacteriaceae* and comprises 15 recognized species. *Yersinia pestis*, *Yersinia pseudotuberculosis* and *Yersinia enterocolitica* are associated with human and animal diseases. *Yersinia ruckeri* is a fish pathogen and all the other species are considered to be mainly non-pathogenic and environmental isolates (Wanger, 2007). The newest members of the genus are *Yersinia aleksiae* (Sprague & Neubauer, 2005), *Yersinia similis* (Sprague et al., 2008), *Yersinia massiliensis* (Merhej et al., 2008) and *Yersinia entomophaga* (Hurst et al., 2011).

Four *Y. massiliensis* strains selected from the collection of the Brazilian Reference Center on *Yersinia* spp. other than *Y. pestis* shared many of the phenotypic characteristics with strain CCUG 53443T, the type strain of *Y. massiliensis*. However, they differed from this type strain in the results of four biochemical tests used to characterize this species, as described in Merhej et al. (2008). Further information on the four *Y. massiliensis* strains used in this study is given in Table 1. It is important to highlight that these *Yersinia* strains had been isolated from environmental and food sources and had not been implicated in human disease.

The four strains, FCF 216, FCF 465, FCF 457 and FCF 494, were assigned as belonging to the species *Y. massiliensis* based on the sequences of five conserved loci (16S rRNA, *gyrB*, *hsp60*, *rpoB* and *sodA* gene sequences). Internal fragments of these loci were amplified for the four strains and were compared with sequences of the same loci for other species of the genus *Yersinia* that had already been deposited in GenBank (Kotetishvili et al., 2005; Sprague & Neubauer, 2005; Merhej et al., 2008; Sprague et al., 2008; Hurst et al., 2011). The sequence and phylogenetic analyses were performed as described by Souza et al. (2010). Phylogenetic trees constructed from the 16S rRNA gene sequences and also from a ‘super locus’ consisting of the concatenated *gyrB*, *hsp60*, *rpoB* and *sodA* sequences for each strain are available as supplementary data with the online version of this paper (Supplementary Figs S1 and S2 in IJSEM Online).

In order to elucidate the phenotypic diversity of *Y. massiliensis* species, strains FCF 216, FCF 465, FCF 457, FCF 494 and CCUG 53443T were subjected to a battery of phenotypic tests. The strains were reisolated on MacConkey agar (Acumedia). They were subjected to the phenotypic tests shown in Table 2. Carbohydrate fermentation and citrate utilization were carried out at 28 °C for 7 days. The other tests were performed at 28 °C for 48 h. The motility assay was conducted at 28 °C and 37 °C for 48 h. Oxidase activity was detected by using a dimethyl-p-phenylenediamine oxalate disk (Newprov). Catalase activity was detected by emulsifying a colony in 3% hydrogen peroxide and checking for the presence of bubbles. Other tests, such as citrate utilization (Acumedia), phenylalanine deaminase (Difco) and urea hydrolysis (Acumedia) were performed according to the manufacturers’ instructions.

Emended description of *Yersinia massiliensis*

Roberto A. Souza,¹ Deise P. Falcão² and Juliana P. Falcão¹

¹Brazilian Reference Center on *Yersinia* spp. other than *Y. pestis*, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto – USP, Ribeirão Preto, Brazil

²Departamento de Ciências Biológicas, Faculdade de Ciências Farmacêuticas de Araraquara – UNESP, Araraquara, Brazil

The bacterial genus *Yersinia* belongs to the family *Enterobacteriaceae* and comprises 15 recognized species. Species of the genus *Yersinia* are usually identified by their phenotypic characteristics. Thus, it is essential to establish a complete phenotypic classification for all species of the genus *Yersinia*. The species *Yersinia massiliensis* was proposed in 2008, based on 16S rRNA, *gyrB*, *hsp60*, *rpoB* and *sodA* gene sequences and some distinguishing phenotypic characteristics. In this study, four *Yersinia* strains classified as *Y. massiliensis* based on the sequencing of the loci mentioned above were subjected to a more detailed phenotypic characterization. This characterization revealed differences in the results of four tests previously reported as diagnostic for *Y. massiliensis* and the results of 18 additional tests provided new information about the biochemical diversity of this species. In the light of the results of the phenotypic characteristics of the four strains of *Y. massiliensis*, an emended description of *Y. massiliensis* is presented.
Carbohydrate fermentation was conducted as described in MacFaddin (2000) using each carbohydrate at a concentration of 0.5\%, with the exception of methyl D-glucoside, which was used at 1.0\%. Gas from glucose and H_2S production were observed in triple-sugar iron agar (HiMedia Laboratories), according to the manufacturer’s instructions. The other tests were all prepared in house. Nitrate reduction, Voges–Proskauer reaction, indole production, ornithine decarboxylase, lysine decarboxylase, arginine dihydrolase and motility tests were prepared as reported in MacFaddin (2000). Salicin fermentation and aesculin hydrolysis were performed as reported in Farmer et al. (1992). Gelatin hydrolysis and lipase were carried out according to the methods of Dempsey & Kitting (1987). Mucate utilization and pyrazinamidase production were conducted as described by the US Food and Drug Administration (2010) and Kandolo & Wauters (1985), respectively.

In order to perform a more detailed phenotypic characterization of the species $Y.\ massiliensis$, the following tests were performed in addition to those previously conducted by Merhej et al. (2008): lactose, raffinose, methyl D-glucoside, cellobiose, D-trehalose, L-sorbose, maltose, L-fucose, salicin and D-xylose fermentation, plus gas from glucose, H_2S production, mucate utilization, nitrate reduction, pyrazinamidase production, lipase, aesculin hydrolysis and motility at 37 °C.

The results of the tests on strains FCF 216, FCF 465, FCF 457 and FCF 494 are summarized in Table 2 and are compared with the phenotypic characteristics of $Y.\ massiliensis$ CCUG 53443$^\text{T}$ as proposed by Merhej et al. (2008). The results of three biochemical tests reported by Merhej et al. (2008) for $Y.\ massiliensis$ were significantly different from those obtained for the $Y.\ massiliensis$ strains in this study. $Y.\ massiliensis$ strains CCUG 53443$^\text{T}$ and CCUG 53444 were reported as positive in tests for lysine decarboxylase, arginine dihydrolase and phenylalanine deaminase by Merhej et al. (2008), but the four strains from our collection gave negative results. However, under our conditions of incubation at 28 °C for 48 h, $Y.\ massiliensis$ CCUG 53443$^\text{T}$ showed negative results for the lysine decarboxylase, arginine dihydrolase and phenylalanine deaminase reactions.

As described by Bottone et al. (2005), all species of the genus $Yersinia$ are lysine decarboxylase-, phenylalanine deaminase- and arginine dihydrolase-negative. However, Bottone et al. (2005) and Sprague & Neubauer (2005) have reported lysine decarboxylase activity in $Y.\ aleyksiae$ and in some strains of $Y.\ ruckeri$, $Y.\ kristensenii$ and $Y.\ intermediæ$. Farmer et al. (1985) reported that a small number of $Y.\ ruckeri$ strains were arginine dihydrolase-positive.

In this study, variable results were also found for citrate utilization. Specifically, three of the $Y.\ massiliensis$ strains (FCF 216, FCF 465 and FCF 457) gave negative results for...
citrate utilization and only strain FCF 494 was able to utilize citrate. Citrate utilization was reported as positive for Y. massiliensis strains CCUG 53443 and CCUG 53444 by Merhej et al. (2008).

It is suggested that the phenotypic differentiation of Y. massiliensis from other species of the genus Yersinia should not just be based on the phenotypic tests proposed by Bockemühl & Wong (2003), Ewing et al. (1978), Sprague & Neubauer (2005), Sprague et al. (2008) and Hurst et al. (2011). Y. enterocolitica, Y. kristensenii, Y. aleksiciae, Y. rohdei and Y. mollaretii differ from Y. massiliensis by the result of only a single test. Thus, it could be possible to identify these species incorrectly. To avoid this problem, we suggest adding aesculin hydrolysis and mucate utilization to the phenotypic identification of species of the genus Yersinia, as presented in Table 3. With the addition of these two tests, it would be possible to differentiate all of the species of the genus Yersinia on the basis of phenotypic characteristics, with the exception of Y. aleksiciae, which cannot be separated from Y. kristensenii based solely on phenotypic tests.

The results of the biochemical tests presented in Table 2 add new information about the biochemical diversity of Y. massiliensis strains and contribute to the further characterization of this species. Based on our results, a more detailed and broader description of the species Y. massiliensis is proposed and an emended description of this species is presented.

Emended description of Yersinia massiliensis

Merhej et al. 2008

Yersinia massiliensis (mas.si.li.en’sis. L. fem. adj. massiliensis pertaining to Massilia, the ancient Roman name of Marseille, France, where the type strain was isolated).

Ferments cellobiose, trehalose, L-sorbose, maltose, L-fucose, salicin and D-xylose, but does not ferment methyl α-D-glucoside. Raffinose and lactose fermentation reactions are variable. Positive reactions are obtained in tests for mucate utilization, nitrate reduction, pyrazinamidase production and aesculin hydrolysis. Motility at 37 °C, gas production from glucose, lipase and H2S production are negative. Citrate utilization is variable after incubation at 28 °C for 7 days. Arginine dihydrolase, lysine decarboxylase and phenylalanine deaminase activities are negative after incubation at 28 °C for 48 h. Using API 20E strips (bioMérieux), positive results are reported for citrate utilization, arginine dihydrolase, lysine decarboxylase and phenylalanine deaminase after 24, 48 and 72 h at 28 °C (Merhej et al., 2008).

The type strain is CCUG 53443T (=CIP 109351T). This species has been isolated from the environment and food.

Table 3. Phenotypic differentiation of species of the genus Yersinia

| Taxa: 1, Y. pestis; 2, Y. pseudotuberculosis; 3, Y. similis; 4, Y. enterocolitica; 5, Y. intermedia; 6, Y. frederiksenii; 7, Y. kristensenii; 8, Y. aleksiciae; 9, Y. aldovae; 10, Y. rohdei; 11, Y. mollaretii; 12, Y. bercovieri; 13, Y. ruckeri; 14, Y. entomophaga; 15, Y. massiliensis. Data are from Bockemühl & Wong (2003), Ewing et al. (1978), Farmer et al. (1985), Sprague & Neubauer (2005), Sprague et al. (2008) and Hurst et al. (2011) with additional information for Y. massiliensis based on the results from this study. Incubation was conducted at 28 °C for 7 days for carbohydrate fermentation and at 28 °C for 48 h for the other tests. +, ≥90 % strains positive; −, ≥90 % strains negative; V, variable, 11–89 % of strains positive; ND, not done. |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Characteristic | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8* | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| Motility | − | + | + | + | + | + | + | + | + | + | + | V | + | + |
| Urease production | − | + | + | + | + | + | + | + | V | + | + | − | − | + |
| Voges–Proskauer reaction | − | − | − | + | + | + | − | − | + | − | − | − | − | − | ND |
| Indole production | − | − | − | V | + | + | V | V | − | − | − | − | − | − | + |
| Citrate utilization | − | − | − | − | V | − | − | V | + | − | − | + | + | V | |
| Ornithine decarboxylase | − | − | − | + | + | + | + | + | + | + | + | + | + | + |
| Aesculin hydrolysis | V | + | + | V | + | V | − | − | − | − | V | − | − | + |
| Mucate utilization | − | − | − | − | − | − | − | − | − | − | − | − | − | − | ND |
| Fermentation of: | | | | | | | | | | | | | | |
| Cellobiose | − | − | − | + | + | + | + | + | + | + | + | − | + | + |
| Melibiose | V | + | − | − | − | − | − | − | V | − | − | − | − | + |
| Raffinose | − | V | − | − | − | − | − | − | V | − | − | − | + | V |
| L-Rhamnose | − | + | + | − | − | − | − | − | − | − | − | − | − | − |
| D-Sorbitol | − | − | − | V | + | + | + | + | + | + | + | + | + | + |
| L-Sorbose | − | − | − | V | + | + | + | + | V | − | + | − | − | + |
| Sucrose | − | − | − | + | + | + | − | − | − | − | + | + | + | + |

Y. aleksiciae cannot be separated from Y. kristensenii based solely on phenotypic tests.
Emended description of Yersinia massiliensis

Acknowledgements

We thank Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (Proc. 06/51434-7) for financial support. During the course of this work R.A.S. was supported by a scholarship from FAPESP (Proc. 07/01146-8). We thank Dr Alzira Maria Paiva de Almeida from CpqAM/FIOCRUZ for providing the DNA for the two Y. pestis strains used in this study. We thank Dr Dimas Tadeu Covas (FMRF-USP) for coordinating the sequencing. We thank Mr Timothy Roberts (MSc), an English colleague, for reviewing the language.

References

