Streptococcus lactarius sp. nov., isolated from breast milk of healthy women

Virginia Martín, Rosario Mañes-Lázaró, Juan Miguel Rodríguez and Antonio Maldonado-Barragán

1Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Universidad Complutense de Madrid, 28040 Madrid, Spain

2ENOLAB-Laboratorio de Microbiología Enológica, Departamento de Microbiología y Ecología, Facultad de Biología, Universidad de Valencia, 46100 Burjassot, Valencia, Spain

3Departamento de Biotecnología de Alimentos, Instituto de la Grasa, Consejo Superior de Investigaciones Científicas, 41012 Sevilla, Spain

Three strains of a hitherto-unknown, Gram-stain-positive coccus were recovered from the milk of three non-related healthy women. The isolates shared 99% 16S rRNA gene sequence similarity with sequences from uncultured members of the *Lactobacillales* and *Streptococcus*. The closest sequence corresponding to a defined species was that of *Streptococcus peroris* GTC 848T, with a similarity of 98%. A partial sequence (488 bp) of the *tuf* gene also showed 97% similarity with that of *S. peroris* CCUG 39814T. The combined 16S rRNA/*tuf*-based phylogeny revealed that all the isolates grouped in a statistically well-supported cluster separate from *S. peroris*. Enzyme activity profiles as well as fermentation patterns differentiated the novel bacteria from other members of the *Streptococcus mitis* group. Finally, phenotypic, genotypic and phylogenetic data supported the proposal of a novel species of the genus *Streptococcus*, for which the name *Streptococcus lactarius* sp. nov. is proposed. The type strain is MV1T (=CECT 7613T =DSM 23027T).

Breast milk is a source of commensal and potentially probiotic bacteria for the infant gut, including streptococci, staphylococci, bifidobacteria and lactic acid bacteria (Heikkilä & Saris, 2003; Martín et al., 2003; Perez et al., 2008b; Marín et al., 2009). At the time of writing, the genus *Streptococcus* consisted of 109 species and 15 sub-species (DSMZ, 2010), most of them belonging to one of the six phylogenetic clusters that have been established based on 16S rRNA gene sequence analysis (Kawamura et al., 1995). Streptococci isolated from human colostrum or milk of healthy women usually belong to the *Streptococcus salivarius* (*S. bovis, S. salivarius*) or *Streptococcus mitis* (*S. mitis, S. oralis, S. parasanguinis, S. infantis, S. peroris*) groups, as determined by classical phenotypic characteristics and 16S rRNA gene sequencing (Heikkilä & Saris, 2003; Jiménez et al., 2008b; Marín et al., 2009). In addition, streptococcal DNA is also commonly detected in this biological fluid by using molecular techniques such as PCR-DGGE (Delgado et al., 2008) or quantitative real-time PCR (Collado et al., 2009).

The members of the mitis group, which includes 12 species (*S. mitis, S. pneumoniae, S. pseudopneumoniae, S. oralis, S. infantis, S. australis, S. parasanguinis, S. sanguinis, S. gordonii, S. sinensis, S. cristatus* and *S. peroris*), have traditionally caused considerable confusion for both clinical microbiologists and taxonomists (Facklam, 2002). They are difficult to identify by using biochemical tests due to a lack of reliable and updated biochemical traits (Kawamura et al., 1998). Furthermore, members of the mitis group are closely related to each other genetically, and it is very difficult to differentiate between them even by genetic methods, since some members display more than 99% 16S rRNA gene sequence similarity and show 40–60% DNA–DNA relatedness (Kawamura et al., 1995). However, sequencing of other housekeeping genes, such as sodA, rpoB or *tuf*, has provided useful tools for the identification of species within the genus *Streptococcus* and, in particular, within the mitis group (Poyart et al., 1998; Drancourt et al., 2004; Picard et al., 2004). Recently, Bishop et al. (2009) developed software based on multilocus sequence analysis and phylogenetic comparisons of seven housekeeping genes for the identification of viridans streptococci. The difficulties in achieving an accurate
identification among the species of the mitis group may have practical consequences, since this group contains 11 species that are considered prototype commensals of the digestive and upper respiratory tracts, as well as one of the leading human pathogens (*S. pneumoniae*) (Kilian et al., 2008).

While assessing the bacterial diversity of breast milk from healthy woman (Martin et al., 2007; Jiménez et al., 2008b), we isolated streptococci that seemed to belong to the mitis group, but study of the phenotypic and genotypic characteristics and phylogenetic position of strains MV1^T, MV2 and MV3 indicated that these strains represented a novel species of the genus *Streptococcus*.

Isolates MV1^T, MV2 and MV3 were isolated from breast-milk samples collected as described previously (Jiménez et al., 2008b), and each one was obtained from a different (and non-related) healthy woman. The samples had been inoculated on Columbia CNA agar plus 5 % sheep blood, containing colistin and nalidixic acid (CNA; bioMérieux), under anaerobic conditions (MINI-MACS anaerobic workstation; DW Scientific) at 37 °C for 48 h. Preliminary 16S rRNA gene sequence analysis (~450 bp) of the three isolates by PCR amplification with primers plb16 (5′-AGAGTTTGATCCTGGCTCAG-3′) and mlb16 (5′-GGCTGCGACGTAGTTAG-3′) (Kullen et al., 2000) revealed very high similarity (>98 %) with a sequence from an uncultured *Streptococcus* clone.

To determine the phylogeny relationships of the three isolates, the 16S rRNA gene was amplified and sequenced with primers 7for (5′-AGAGTTTGATCCTGGCTCAG-3′) and 1510r (5′-TACGGYTACCTTGTTACGACTT-3′) (Lane, 1991). In addition, partial amplification and sequencing (488 bp) of the *tuf* gene with primers TufStrep1 (5′-GGAAGATTTGCTGATTTGATGGAAGAATGG-3′) and Tu-Strep-R (5′-GGAGCCTAGTGTGTTGAAAGATGG-3′) (Collado et al., 2009) was performed.

The DNA sequences of the 16S rRNA and *tuf* genes of the isolates were compared with those available in the NCBI by using the BLASTN algorithm (http://blast.ncbi.nlm.nih.gov/ Blast.cgi). DNA sequences belonging to type strains of the *Streptococcus* genus were obtained from the GenBank database (see Fig. 1 and Supplementary Fig. S1, available in IJSEM Online). These sequences were aligned by using the CLUSTAL W method (Thompson et al., 1994) with the MEGA 4 (version 4.0.2) software (Tamura et al., 2007). Phylogenetic trees were constructed based on the neighbour-joining method (Saitou & Nei, 1987). Bootstrapping analysis (1000 replicates) was done to study the stability of the groupings.

The G + C content of strain MV1^T was determined by HPLC following the procedure of Mesbah et al. (1989). DNA–DNA hybridization experiments were performed by the chemiluminescent-haemagglutinin method as described by Urdiain et al. (2008) using genomic DNA of strains MV1^T, MV2 and MV3 and of *S. peroris* DSM 12493^T and *S. parasanguinis* DSM 6778^T. The reference DNA was that of strain MV1^T, and the results are expressed as mean percentage values based on three independent hybridization experiments.

The 16S rRNA and *tuf* gene sequences of isolates MV1^T, MV2 and MV3 were 100 % identical. BLAST analysis of the 16S rRNA gene sequences (1452 bp) showed 99.2 % similarity with sequences from uncultured clones assigned to the *Lactobacillales* and *Streptococcus*. The closest sequence corresponding to a defined species was that of *S. peroris* GTC 848^T, with a similarity of 98.2 %. Similarly, BLAST analysis of the partial sequence (488 bp) of the *tuf* gene showed 97.7 % similarity with that of *S. peroris* CCUG 39814^T.

The phylogeny inferred from the 16S rRNA gene sequence using the neighbour-joining method showed that isolates MV1^T, MV2 and MV3 formed a new subline within the *Streptococcus* species that make up the mitis group, being grouped with *S. peroris* GTC 848^T (Fig. 1). Bootstrap resampling (96 %) showed that the strain MV1^T and *S. peroris* GTC 848^T branches were statistically significant. The phylogeny inferred from the *tuf* gene sequence showed a clustering of strain MV1^T and *S. peroris* CCUG 39814^T, with a bootstrap value of 98 % (Supplementary Fig. S1). However, the topology of the tree was slightly different from that reconstructed with the 16S rRNA sequence. Therefore, sequences of the 16S rRNA and *tuf* genes (1940 nt) were concatenated. Phylogenetic trees inferred after compilation of the two sequences showed higher bootstrap support than individual phylogenetic analysis of the 16S rRNA and *tuf* genes (not shown).

Since the new taxon contains more than a single strain, and these strains share more than 97 % 16S rRNA gene

Fig. 1. Phylogenetic relationships of strain MV1^T with members of the *S. mitis* group based on comparison of 16S rRNA gene sequences (1452 nt). For clarity, isolates MV2 and MV3, which are 100 % identical to MV1^T in their 16S rRNA gene sequences, are not shown. Nucleotide accession numbers are given in parentheses. The tree was based on the neighbour-joining method. Numbers on the tree indicate bootstrap values calculated for 1000 subsets for branch-points (values greater than 50 % are shown). Bar, 0.005 changes per nucleotide position (0.5 % sequence divergence).
sequence similarity, DNA–DNA hybridization was carried following the recommendations of Tindall et al. (2010). Intraspecific hybridization assays, performed with strains MV1\(^T\), MV2 and MV3, gave values greater than 70 %, thus including these strains in the same genomic species (Stackebrandt & Goebel, 1994; Stackebrandt & Ebers, 2006). The relative binding ratios of strains MV2 and MV3 to strain MV1\(^T\) were 98.7 % (± 0.7 %) and 92.9 % (± 0.8 %), respectively. Interspecific hybridization of strain MV1\(^T\) with S. peroris DSM 12493\(^T\) and S. parasanguinis DSM 6778\(^T\) was 57.4 % (± 0.1 %) and 63.6 % (± 0.7 %), respectively. Reciprocal hybridization experiments using genomic DNA of S. peroris DSM 12493\(^T\) as the template gave a value of 56.1 % (± 1.0 %) with strain MV1\(^T\). These results confirm that the three isolates MV1\(^T\), MV2 and MV3 represent a novel species. The G+C content of strain MV1\(^T\) was 41.2 mol%.

Colonies of the novel strains grew on Columbia sheep- or horse-blood agar plates after 2 days of incubation. The colonies were about 0.3–0.5 mm in diameter, circular, flat, greyish with a smooth surface, non-pigmented and \(\alpha\)-haemolytic. However, under anaerobic conditions, haemolysis was visible only after the plates had been taken out of the anaerobic chamber for more than 1 h. The cells were coccoid, usually occurring as pairs or short chains, Gram-positive after staining, non-spore-forming and non-motile. They were facultatively anaerobic, but grew better under anaerobic conditions on CNA agar plates. The three strains showed a clumping phenotype when they were inoculated in brain heart infusion broth.

Table 1. Biochemical characteristics that differentiate the novel strains from other members of the mitis group

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fermentation of:</td>
<td></td>
</tr>
<tr>
<td>Lactose</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trehalose</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Pullulan</td>
<td>+</td>
</tr>
<tr>
<td>Melibiose</td>
<td>-</td>
</tr>
<tr>
<td>Methyl (\beta)-D-glucopyranoside</td>
<td>-</td>
</tr>
<tr>
<td>Tagatose</td>
<td>-</td>
</tr>
<tr>
<td>Production of:</td>
<td></td>
</tr>
<tr>
<td>(\beta)-Glucosidase</td>
<td></td>
</tr>
<tr>
<td>(aesculin)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>(\alpha)-Galactosidase</td>
<td></td>
</tr>
<tr>
<td>Alkaline phosphatase</td>
<td></td>
</tr>
<tr>
<td>(\beta)-Galactosidase</td>
<td></td>
</tr>
<tr>
<td>N-Acetyl-(\beta)-glucosaminidase</td>
<td></td>
</tr>
<tr>
<td>Glycol-tryptophan arylamidase</td>
<td></td>
</tr>
<tr>
<td>(\beta)-Mannosidase</td>
<td></td>
</tr>
<tr>
<td>Hydrolysis of arginine</td>
<td></td>
</tr>
<tr>
<td>Optochin sensitivity</td>
<td></td>
</tr>
<tr>
<td>Bile solubility</td>
<td></td>
</tr>
<tr>
<td>Pneumococcal latex agglutination</td>
<td></td>
</tr>
</tbody>
</table>

Strains: 1, S. australis ATCC 700641\(^T\); 2, S. peroris DSM 12493\(^T\); 3, S. infantis ATCC 700779\(^T\); 4, S. lactarius sp. nov. MV1\(^T\) (strains MV2 and MV3 gave identical results); 5, S. oralis ATCC 35027\(^T\); 6, S. sanguinis ATCC 10556\(^T\); 7, S. gordonii ATCC 10558\(^T\); 8, S. parasanguinis ATCC 15912\(^T\); 9, S. cristatus ATCC 12479\(^T\); 10, S. mitis ATCC 49456\(^T\); 11, S. sinesis CCUG 48488\(^T\). Results for S. peroris DSM 12493\(^T\) and S. lactarius MV1\(^T\) were determined in this study by using the Rapid ID 32 Strept kit under the same culture conditions. Data for other reference strains were taken from Wilcoxon et al. (2001) and Hoshino et al. (2005). ND, No data available.

Description of Streptococcus lactarius sp. nov.

Streptococcus lactarius (lact.ta’ri.us. L. masc. adj. lactarius of or belonging to milk, referring to the isolation of the first strains from human breast milk).

Cells are Gram-positive after staining and are non-motile, non-spore-forming cocci, 1.0–1.3 \(\mu\)m in diameter, occurring as pairs or short chains. Colonies on Columbia sheep- or horse-blood agar plates after 2 days of incubation are about 0.3–0.5 \(\mu\)m in diameter, circular, flat, greyish, non-pigmented and \(\alpha\)-haemolytic. Grows under aerobic or anaerobic conditions but, under anaerobic conditions, haemolysis is visible only when the plates have been taken out of the anaerobic chamber for more than 1 h. Hydrolyses hippurate. Voges–Proskauer-negative. Exhibits the following enzyme activities: arginine dihydrolase, \(\beta\)-glucosidase, alkaline phosphatase, alanine phenylalanine proline arylamidase and glycol tryptophan arylamidase.

Based on phenotypic, genotypic and phylogenetic characteristics, we suggest that the strains studied represent a novel species of the genus Streptococcus, for which the name Streptococcus lactarius sp. nov. is proposed.
Lacks β-glucuronidase, α-galactosidase, pyrrolidonyl arylamidase, N-acetyl-β-glucosaminidase and β-mannosidase activities. β-Galactosidase activity is detected using p-nitrophenyl β-D-galactopyranoside as the substrate, but not with 2-naphthyl β-D-galactopyranoside. Positive for aesculin hydrolysis. Acid is produced from lactose, maltose and sucrose, but not from ribose, mannitol, sorbitol, trehalose, raffinose, glycerogen, pullulan, melibiose, tagatose, melezitose, L-arabinose, D-arabitol, cyclodextrin or methyl β-D-glucopyranoside.

The type strain, MV1T (= CECT 7613T = DSM 23027T), was isolated from breast milk of a healthy woman.

Acknowledgements

This work was supported by the FUN-C-FOOD (Consolider-Ingenio 2010) and AGL2007-62042 projects from the Ministerio de Educació n y Ciencia (Spain). We thank Esther Jiménez for her skilful assistance in the purification of genomic DNA of \textit{S. lactarius} strains.

References

http://ijs.sgmjournals.org

