1887

Abstract

An obligate piezophilic anaerobic hyperthermophilic archaeon, designated strain CH1, was isolated from a hydrothermal vent site named ‘Ashadze’, which is located on the Mid-Atlantic Ridge at a depth of 4100 m. Enrichment and isolation of the strain were carried out at 95 °C under a hydrostatic pressure of 42 MPa. Cells of strain CH1 were highly motile irregular cocci with a diameter of ~1–1.5 µm. Growth was recorded at 80–108 °C (optimum 98 °C) and at pressures of 20–120 MPa (optimum 52 MPa). No growth was observed under atmospheric pressures at 60–110 °C. Growth was observed at pH 6.0–9.5 (optimum 7.5–8.0) and in 2.5–5.5 % (w/v) NaCl (optimum 3.5 %). Strain CH1 was strictly anaerobic and grew on complex proteinaceous substrates, such as yeast extract, Peptone, and casein, as well as on sucrose, starch, chitin, pyruvate, acetate and glycerol without electron acceptors. The G+C content of the genomic DNA was 49.0±0.5 mol%. Analysis of 16S rRNA gene sequences revealed that strain CH1 belongs to the genus . Based on its physiological properties and similarity levels between ribosomal proteins, strain CH1 represents a novel species, for which the name sp. nov. is proposed. The type strain is CH1 ( = JCM 16557). This strain is also available by request from the Souchothèque de Bretagne (catalogue LMBE) culture collection (collection no. 3310).

Funding
This study was supported by the:
  • UBO/IUEM, CNRS, Ifremer
  • ANR project DEEP-OASES
  • Hubert Curien (PHC) PFCC collaboration grant
  • Egide
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.024653-0
2011-12-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/12/2827.html?itemId=/content/journal/ijsem/10.1099/ijs.0.024653-0&mimeType=html&fmt=ahah

References

  1. Alain K., Marteinsson V. T., Miroshnichenko M. L., Bonch-Osmolovskaya E. A., Prieur D., Birrien J. L. 2002; Marinitoga piezophila sp. nov., a rod-shaped, thermo-piezophilic bacterium isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 52:1331–1339 [View Article][PubMed]
    [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410[PubMed] [CrossRef]
    [Google Scholar]
  3. Barbier G., Godfroy A., Meunier J. R., Quérellou J., Cambon M. A., Lesongeur F., Grimont P. A. D., Raguénès G. 1999; Pyrococcus glycovorans sp. nov., a hyperthermophilic archaeon isolated from the East Pacific Rise. Int J Syst Bacteriol 49:1829–1837 [View Article][PubMed]
    [Google Scholar]
  4. Brochier-Armanet C., Boussau B., Gribaldo S., Forterre P. 2008; Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota . Nat Rev Microbiol 6:245–252 [View Article][PubMed]
    [Google Scholar]
  5. Fouquet Y., Cherkashov G., Charlou J.-L., Ondreas H., Cannat M., Bortnikov N., Silantiev S., Etoubleau J. Scientific Party 2007; Diversity of ultramafic hosted hydrothermal deposits on the Mid-Atlantic Ridge: First submersible studies of Ashadze, Logatchev 2, and Krasnov vent fields during the Serpentine Cruise.. Eos Trans AGU 8852 Fall Meeting Suppl., Abstract T51F–03
    [Google Scholar]
  6. Galtier N., Gouy M., Gautier C. 1996; seaview and phylo_win: two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci 12:543–548[PubMed]
    [Google Scholar]
  7. Jun X., Lupeng L., Minjuan X., Oger P., Fengping W., Jebbar M., Xiang X. 2011; Complete genome sequence of the obligate piezophillic archaeon Pyrococcus yayanosii CH1. J Bacteriol 193:4297–4298 [CrossRef]
    [Google Scholar]
  8. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118 [View Article][PubMed]
    [Google Scholar]
  9. Marteinsson V. T., Moulin P., Birrien J. L., Gambacorta A., Vernet M., Prieur D. 1997; Physiological responses to stress conditions and barophilic behaviour of the hyperthermophilic archaeon Pyrococcus abyssi . Appl Environ Microbiol 93:1230–1236
    [Google Scholar]
  10. Marteinsson V. T., Birrien J. L., Reysenbach A. L., Vernet M., Marie D., Gambacorta A., Messner P., Sleytr U. B., Prieur D. 1999a; Thermococcus barophilus sp. nov., a new barophilic and hyperthermophilic archaeon isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. Int J Syst Bacteriol 49:351–359 [View Article][PubMed]
    [Google Scholar]
  11. Marteinsson V. T., Reysenbach A. L., Birrien J. L., Prieur D. 1999b; A stress protein is induced in the deep-sea barophilic hyperthermophile Thermococcus barophilus when grown under atmospheric pressure. Extremophiles 3:277–282 [View Article][PubMed]
    [Google Scholar]
  12. Matte-Tailliez O., Brochier C., Forterre P., Philippe H. 2002; Archaeal phylogeny based on ribosomal proteins. Mol Biol Evol 19:631–639[PubMed] [CrossRef]
    [Google Scholar]
  13. Raguénès G., Christen R., Guézennec J., Pignet P., Barbier G. 1997; Vibrio diabolicus sp. nov., a new polysaccharide-secreting organism isolated from a deep-sea hydrothermal vent polychaete annelid, Alvinella pompejana . Int J Syst Bacteriol 47:989–995 [View Article][PubMed]
    [Google Scholar]
  14. Rosselló-Mora R., Amann R. 2001; The species concept for prokaryotes. FEMS Microbiol Rev 25:39–67 [View Article][PubMed]
    [Google Scholar]
  15. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [View Article]
    [Google Scholar]
  16. Takai K., Sugai A., Itoh T., Horikoshi K. 2000; Palaeococcus ferrophilus gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol 50:489–500 [View Article][PubMed]
    [Google Scholar]
  17. Takai K., Nakamura K., Toki T., Tsunogai U., Miyazaki M., Miyazaki J., Hirayama H., Nakagawa S., Nunoura T., Horikoshi K. 2008; Cell proliferation at 122 °C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc Natl Acad Sci U S A 105:10949–10954 [View Article][PubMed]
    [Google Scholar]
  18. Takai K., Miyazaki M., Hirayama H., Nakagawa S., Quérellou J., Godfroy A. 2009; Isolation and physiological characterization of two novel, piezophilic, thermophilic chemolithoautotrophs from a deep-sea hydrothermal vent chimney. Environ Microbiol 11:1983–1997 [View Article][PubMed]
    [Google Scholar]
  19. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [View Article][PubMed]
    [Google Scholar]
  20. Zeng X., Birrien J. L., Fouquet Y., Cherkashov G., Jebbar M., Quérellou J., Oger P., Cambon-Bonavita M. A., Xiao X., Prieur D. 2009; Pyrococcus CH1, an obligate piezophilic hyperthermophile: extending the upper pressure–temperature limits for life. ISME J 3:873–876 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.024653-0
Loading
/content/journal/ijsem/10.1099/ijs.0.024653-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error