Two Gram-negative-staining, aerobic bacterial strains, designated CL-SC21T and CL-SC22, were isolated from a culture of the diatom *Skeletonema costatum* (Korean Marine Microalgae Culture Center, KMMCC strain B-396) established from the East Sea, Korea. The two novel strains shared 99.9% 16S rRNA gene sequence similarity. Analysis of the 16S rRNA gene sequences showed an affiliation with the genus *Nitratireductor*, with the strains sharing 96.5–97.5% similarity with the type strains of recognized species of the genus *Nitratireductor* and being most closely related to *Nitratireductor aquibiodomus* NL21T. Phylogenetic analyses of the 16S rRNA gene sequences showed that strain CL-SC21T together with strain CL-SC22 belonged to the genus *Nitratireductor* and formed a robust clade among closely related *Nitratireductor* species. The polar lipids comprised phosphatidylcholine, phosphatidylglycerol, diposphatidylglycerol, phosphatidylethanolamine, phosphatidylmonomethylethanolamine, two unidentified aminophospholipids, an unidentified aminolipid, an unidentified phospholipid and five unidentified lipids. Ubiquinone 10 was the major quinone. The major cellular fatty acids of strains CL-SC21T and CL-SC22 were C18:1ω7c (70.6–72.3%), C19:0ω9c cyclo (10.9–11.8%), C18:2ω6c, C16:1ω7c, C16:0, C17:0ω7c and cyclo (10.9–11.8%). The genomic DNA G+C contents of strains CL-SC21T and CL-SC22 were 56.7 and 57.1 mol%, respectively. The level of DNA–DNA relatedness between strains CL-SC21T and CL-SC22 was 86% (reciprocal 91%), indicating that the two isolates represented a single species. However, levels of DNA–DNA relatedness between *N. aquibiodomus* NL21T and strains CL-SC21T and CL-SC22 were 28% (reciprocal 45%) and 25% (reciprocal 50%), respectively. Phylogenetic analysis and the results of biochemical tests showed that strains CL-SC21T and CL-SC22 were different from all recognized species of the genus *Nitratireductor*. Thus, strains CL-SC21T and CL-SC22 represent a novel species of the genus *Nitratireductor*, for which the name *Nitratireductor aquimarinus* sp. nov. is proposed. The type strain is CL-SC21T (=KCCM 90090T=JCM 17288T).

The genus *Nitratireductor*, a member of the family *Phyllobacteriaceae*, was formally described by Labbé et al. (2004) and, at the time of writing, comprised five recognized species, *Nitratireductor aquibiodomus*, *N. basaltis*, *N. kimnyeongensis*, *N. indicus* and *N. pacificus*. *N. aquibiodomus* NL21T, a nitrate-reducing bacterium, was isolated from a marine denitrification system of the Montreal Biodome (Labbé et al., 2004). *N. basaltis* was isolated from black sand beach of Jeju Island, Korea (Kim et al., 2009). *N. kimnyeongensis* (Kang et al., 2009) was isolated from a dried seaweed sample collected from Kimnyeong Beach in Jeju, Korea. *N. indicus* (Lai et al., 2011b) and *N. pacificus* (Lai et al., 2011a) were isolated from deep-sea water of the Indian Ocean and deep-sea sediment of the Pacific Ocean, respectively. The aim of the present study was to determine the taxonomic positions of two *Nitratireductor*-like strains, CL-SC21T and CL-SC22, isolated from a diatom culture.

A culture of the diatom *Skeletonema costatum* (KMMCC strain B-396) has been established from the east coast of Korea and maintained by transferring small quantities of culture to f/2 medium (Guillard & Ryther, 1962). For isolating bacteria from the diatom culture, an aliquot (10 μl) of the culture in the exponential phase was taken and spread on marine agar 2216 (MA; Difco) plates and incubated aerobically at 30 °C for 1 week. Two novel strains, CL-SC21T and CL-SC22, were isolated and subsequently streaked onto fresh MA at 30 °C. The purification procedure
Nitratireductor aquimarinus sp. nov.

was repeated four times. The two novel strains were able to grow well on trypticase soy agar (TSA; Difco) at 35 °C. The two strains were maintained on TSA at 35 °C and preserved in trypticase soy broth (TSB; Difco) supplemented with 30 % (v/v) glycerol at −80 °C.

Morphological and physiological analyses were performed as follows. Unless otherwise specified, all characteristics of strains CL-SC21T and CL-SC22 were based on cultures grown on TSA at 35 °C. Gram-staining was performed as described by Smibert & Krieg (1994). Motility of the cells was observed by the hanging-drop method (Suzuki et al., 2001). Cell morphology and presence of flagella were examined by transmission electron microscopy (EX2; JEOL). The temperature range for growth was determined on the basis of colony formation on TSA incubated at 5–45 °C (increments of 5 °C) and 4 °C. Growth at pH 5.1, 5.6, 6.0, 6.5, 6.9, 7.3, 7.7, 8.2, 8.6, 9.0, 9.3 and 9.6 was determined by assessing changes in OD600 over the incubation period (up to 10 days) in TSB at 35 °C; prior to autoclaving, pH (5–10, at increments of 0.5 pH units) was adjusted by using 1 M NaOH and 1 M HCl solutions. After autoclaving and cooling, the pH values were measured for the subsamples of each medium, before inoculation of cells. The tolerance of strains CL-SC21T and CL-SC22 to NaCl was determined on the basis of colony formation on synthetic ZoBell agar (per litre distilled water: 5 g Bacto peptone, 1 g yeast extract, 0.1 g ferric citrate, 15 g Bacto agar) supplemented with 0–10 % (increments of 1%) and 15 % (w/v) NaCl. Anaerobic growth was tested on TSA medium by using the GasPak anaerobic system (BBL) for 15 days. Resistance to antibiotics was determined by the disc diffusion plate method (Bauer et al., 1966) by using custom-made antibiotic-impregnated discs.

For 16S rRNA gene amplification by PCR, DNA was extracted from a single colony by the boiling method (Englen & Kelley, 2000). The crude extracts served as the DNA template for PCR, which included Taq DNA polymerase (Bioneer) and primers 27F and 1492R (Lane, 1991). The PCR product was purified by using the AccuPrep PCR purification kit (Bioneer). Sequencing of the purified 16S rRNA gene was performed by using sequencing primers (27F, 518F, 800R, 1492R; Lane, 1991; Anzai et al., 1997) with an Applied Biosystems automated sequencer (ABI3730XL) at Macrogen, Seoul, Korea. The almost-complete 16S rRNA gene sequences of strains CL-SC21T (1417 bp) and CL-SC22 (1416 bp) were obtained and compared with available 16S rRNA gene sequences in the GenBank database by using BLASTN searches (Altschul et al., 1990). The sequences of strains CL-SC21T and CL-SC22 were manually aligned via the jPhyDIT program (Jeon et al., 2005) with all available 16S rRNA gene sequences from the type strains of recognized species of the genus Nitratireductor and with those of the type species of other genera in the family Phyllobacteriaceae, obtained from the GenBank and Ribosomal Database Project II databases (Cole et al., 2007). Accurate multiple alignment was made manually according to the 16S rRNA gene secondary-structure information implemented in the jPhyDIT program. Phylogenetic trees were constructed with the neighbour-joining (Saitou & Nei, 1987), maximum-parsimony (Fitch, 1971) and maximum-likelihood (Felsenstein, 1981) methods. An evolutionary distance matrix for the neighbour-joining method was generated according to the model of Jukes & Cantor (1969). The robustness of tree topologies was assessed by bootstrap analyses based on 1000 replications for the neighbour-joining and maximum-parsimony methods. Phylogenetic analyses were carried out by using MEGA 4 (Tamura et al., 2007) and PAUP 4.0 (Swofford, 1998). Levels of genomic DNA–DNA relatedness were determined by dot-blot hybridization (Kim et al., 2007). Pre-hybridization, hybridization (45 °C) and detection were performed by using a DIG labelling and detection kit (Roche Molecular Biochemicals) according to the manufacturer’s instructions. The experiment was repeated on different days.

Polar lipids were extracted according to the procedures described by Minnikin et al. (1984) and were identified by two-dimensional TLC followed by spraying with appropriate detection reagents (Komagata & Suzuki, 1987). The quinone system was determined according to Minnikin et al. (1984) and components were analysed by HPLC as described by Collins (1985) by using Colhaesibacter gelatinlyticus CL-GR15T (Hwang & Cho, 2008) as a reference strain. Cellular fatty acids of strains CL-SC21T and CL-SC22 were extracted and derivatized to their fatty acid methyl esters according to the protocol of Miller (1982). The samples were then prepared according to the instructions of the Sherlock Microbial Identification System (MIDI; version 3.10) and were analysed by GC at the Korean Culture Center of Microorganisms (Seoul, Korea). The strains were grown on TSA (Difco) at 35 °C for 3 days and on MA at 28 °C for 2 days. The DNA G+C content was analysed by HPLC (HP 100; Hewlett Packard) of deoxyribonucleosides as described by Mesbah et al. (1989), after DNA extraction according to Marmur (1961). N. aquibiodomus NL21T was used as a standard.

In the following biochemical tests, N. aquibiodomus NL21T was used as a reference strain. Catalase and oxidase were assayed according to the protocols described by Smibert & Krieg (1994). Strains were tested for the ability to reduce nitrate under anaerobic conditions at 35 °C in TSB supplemented with 10 mM NO3− as KNO3, and 10 μM phenol red (Vanparys et al., 2005). The presence of nitrite and nitrate was tested after 2 and 5 days by using the procedure described by Smibert & Krieg (1994). The biochemical characteristics of strains CL-SC21T, CL-SC22, N. aquibiodomus NL21T, N. basalis J3T and N. kimnyeongensis KY 1017 were determined by using the API ZYM and API 20NE kits (bioMérieux) according to the manufacturer’s instructions, except that the cell suspension was prepared with artificial seawater (per litre distilled water: 24 g NaCl, 10.9 g MgCl2.6H2O, 4 g Na2SO4.1.5 g CaCl2.2H2O, 0.7 g KCl, 0.2 g NaHCO3, 0.1 g KBr, 0.027 g H3BO3, 0.03 g SrCl2, 6H2O, 0.003 g NaF; Lyman &
Fleming, 1940). For tests with the API ZYM and API 20NE kits, all strains were cultivated on MA at 35 °C for 2 days.

The level of 16S rRNA gene sequence similarity between strains CL-SC21T and CL-SC22 was 99.9%. Analysis of 16S rRNA gene sequences showed an affiliation with the genus *Nitratireductor*, the two novel strains sharing 96.5–97.5% similarity with the type strains of recognized species of the genus *Nitratireductor* and being most closely related to *N. aquibiodomus* NL21T. Phylogenetic analyses of the 16S rRNA gene sequences showed that strain CL-SC21T formed a robust clade with strain CL-SC22, and that this clade clustered tightly with the nearest clade containing *N. aquibiodomus* NL21T and *N. kinnyoongensis* KY 101T (Fig. 1). Thus, the distinct phylogenetic position of the two strains indicated that they represented a novel species of the genus *Nitratireductor*. The mean level of DNA–DNA relatedness between strains CL-SC21T and CL-SC22 was 86 ± 1% (reciprocal 91 ± 1%), indicating that these two strains belonged to a single species. Mean levels of DNA–DNA relatedness between *N. aquibiodomus* NL21T and strains CL-SC21T and CL-SC22 were 28 ± 16% (reciprocal 45 ± 18%) and 25 ± 8% (reciprocal 50 ± 1%), respectively. These values are below the currently accepted cut-off (70%) for the phylogenetic definition of a species (Stackebrandt & Goebel, 1994) and therefore the phylogenetic and genomic

![Fig. 1. Neighbour-joining tree based on 16S rRNA gene sequences showing the phylogenetic positions of strains CL-SC21T and CL-SC22, and the type strains of recognized species of the genus *Nitratireductor* and members of the family *Phyllobacteriaceae*; *Hyphomicrobium denitrificans* DSM 1869T was used as the outgroup. Bootstrap values (percentages of 1000 resamplings) are shown at branch points; only values >60% are shown. Solid circles indicate that the corresponding nodes were also obtained in the maximum-likelihood and maximum-parsimony trees. Bar, 0.01 nt substitutions per site.](image-url)
evidence indicates that strains CL-SC21T and CL-SC22 represent a single novel species of the genus \textit{Nitratireductor}.

The major polar lipids of strain CL-SC21T were phosphatidylcholine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylmonomethylethanolamine, two unidentified aminophospholipids, an unidentified aminolipid and three unidentified lipids (see Supplementary Fig. S1 in IJSEM Online). An unidentified phospholipid and two unidentified lipids were detected in minor amounts (Supplementary Fig. S1). All the above polar lipids were commonly detected in strain CL-SC21T and in \textit{N. aquibiodomus} NL21T (Supplementary Fig. S1). The major quinone was ubiquinone 10 (Q-10) for strains CL-SC21T, CL-SC22 and \textit{N. aquibiodomus} NL21T. The fatty acid profiles of strains CL-SC21T and CL-SC22 were similar (Supplementary Table S1): the major components were C\textsubscript{18:1} \(\text{v}_{7} \) (70.6–72.3%) and C\textsubscript{19:0} \(\text{v}_{8} \) \(\text{cyclo} \) (10.9–11.8%). These fatty acids are also found as major components in related species of the genus \textit{Nitratireductor} (Supplementary Table S1). The genomic DNA G+C contents of strains CL-SC21T and CL-SC22 (56.7 and 57.1 mol%, respectively) were within the range reported for members of the genus \textit{Nitratireductor}, but differed distinctly from that of the type strain of \textit{N. pacificus} (63 mol%; Lai \textit{et al.}, 2011a). Strains CL-SC21T and CL-SC22 had traits differentiating them from

\begin{table}[h]
\centering
\begin{tabular}{|l|c|c|c|c|}
\hline
Characteristic & 1 & 2 & 3 & 4 \\
\hline
\hline
pH range for growth (optimum) & 6.5–9.0 (7.7–8.2) & 6.5–9.0 (7.0–7.5) & 5.5–10.0 (7.0–8.1)* & 6.1–12.1 (7.0)* \\
\hline
NaCl range for growth (optimum) (%) & 1–7 (3–4) & 0–5 (1) & 0–8 (3)* & 0–7 (3)* \\
\hline
DNA G+C content (mol%) & 56.7 (57.1)† & 57 & 56.7 & 60.4 \\
\hline
API ZYM results* & & & & \\
\hline
Cystine arylamidase & w & w‡ & – & –‡ \\
\hline
\(\alpha \)-Galactosidase & – & – & + & – \\
\hline
\(\beta \)-Galactosidase & – & – & w & – \\
\hline
\(\alpha \)-Glucosidase & – & w‡ & – & + \\
\hline
\(\beta \)-Glucosidase & – & – & – & – \\
\hline
\textit{N}-Acetyl-\(\beta \)-glucosaminidase & + & + & – & – \\
\hline
API 20NE results* & & & & \\
\hline
Nitrate reduction & + & + & –‡ & – \\
\hline
Arginine dihydrolase & – & w & – & – \\
\hline
Urease & + & – & – & – \\
\hline
\(\beta \)-Glucosidase (aesculin hydrolysis) & – & – & +§ & – \\
\hline
\(\beta \)-Galactosidase (PNPG) & + & – & + & – \\
\hline
Assimilation (API 20NE) of:* & & & & \\
\hline
Arabinose & + & + & –‡ & – \\
\hline
Mannose & + & + & – & – \\
\hline
Mannitol & + & + & – & + \\
\hline
Maltose & – & – & –‡ & – \\
\hline
Glucuronate & – & – & + & – \\
\hline
Glucose & + & + & + & + \\
\hline
Adipate & – & +‖ & – & – \\
\hline
Malate & – & +‖ & – & – \\
\hline
Citrate & + & + & – & – \\
\hline
\hline
\end{tabular}
\caption{Differential characteristics between strains CL-SC21T and CL-SC22 and the type strains of recognized species of the genus \textit{Nitratireductor}}
\end{table}

Strains: 1, CL-SC21T and CL-SC22; 2, \textit{N. aquibiodomus} NL21T (unless indicated otherwise, data from Labbé \textit{et al.}, 2004); 3, \textit{N. basaltis} J3T (Kim \textit{et al.}, 2009); 4, \textit{N. kimnyenogensis} KY 101T (Kang \textit{et al.}, 2009). +, Positive; –, negative; w, weakly positive. All strains are Gram-negative-staining and oxidase- and catalase-positive. In API ZYM and API 20NE tests, all strains are positive or weakly positive for alkaline phosphatase, acid phosphatase, esterase (C4), esterase lipase (C8), leucine arylamidase, naphthol-AS-BI-phosphohydrolase, trypsin and valine arylamidase, but negative for lipase (C14), \(\alpha \)-chymotrypsin, \(\alpha \)-fucosidase, \(\beta \)-glucuronidase, \(\beta \)-glucosidase, \(\alpha \)-mannosidase and gelatinase, indole production, glucose fermentation and assimilation of caprate and phenylacetate.

\begin{itemize}
\item *Data from this study.
\item †Data in parentheses are for strain CL-SC22.
\item ‡Positive in each original study.
\item §Negative in Kim \textit{et al.} (2009).
\item ‖Weakly positive in Labbé \textit{et al.} (2004).
\end{itemize}
recognized species of the genus *Nitratireductor*. For example, the minimum temperature for growth of strains CL-SC21^T and CL-SC22 (20 °C) was higher than those of *N. aquibiodomus*, *N. basaltis* and *N. kimnyeongensis* (10–15 °C, Table 1). Strains CL-SC21^T and CL-SC22 could be distinguished from *N. aquibiodomus*, *N. basaltis* and *N. kimnyeongensis* based on the presence of urease activity (Table 1). Strains CL-SC21^T and CL-SC22 differed from their closest phylogenetic neighbour, *N. aquibiodomus*, based on inability to grow without NaCl, the absence of arginine dihydrolase and z-glucosidase activities, and the presence of β-galactosidase (API 20NE) activity (Table 1). Strains CL-SC21^T and CL-SC22 could be distinguished from *N. basaltis* and *N. kimnyeongensis* by their inability to grow without NaCl and the presence of N-acetyl-β-glucosaminidase activity (Table 1). They could be distinguished from *N. pacificus* and *N. indicus* by their inability to grow without NaCl and inability to grow at pH 5 and at 10–15 °C under the same conditions as described in Lai et al. (2011a, b) (data not shown). Thus, on the basis of the data from the present polyphasic study, strains CL-SC21^T and CL-SC22 are considered to represent a single novel species of the genus *Nitratireductor*, for which the name *Nitratireductor aquimarinus* sp. nov. is proposed.

Emended description of the genus *Nitratireductor* Labbé et al. 2004

With the properties given in the descriptions of species of the genus *Nitratireductor* in earlier studies (Kang et al., 2009; Kim et al., 2009; Lai et al., 2011a, b) and the present study, the description of the genus given by Labbé et al. (2004) is emended as follows. Cells are rods, short rods or coccoid. Motility is variable. Colony colour is white, light yellow, smooth grey or cream. Optimum temperature for growth is 25–35 °C. Strains CL-SC21^T and CL-SC22 could be distinguished from *N. aquibiodomus*, *N. basaltis* and *N. kimnyeongensis* based on the presence or absence of urease activity (Table 1). Strains CL-SC21^T and CL-SC22 differed from their closest phylogenetic neighbour, *N. aquibiodomus*, based on inability to grow without NaCl, the absence of arginine dihydrolase and z-glucosidase activities, and the presence of β-galactosidase (API 20NE) activity (Table 1). Strains CL-SC21^T and CL-SC22 could be distinguished from *N. basaltis* and *N. kimnyeongensis* by their inability to grow without NaCl and the presence of N-acetyl-β-glucosaminidase activity (Table 1). They could be distinguished from *N. pacificus* and *N. indicus* by their inability to grow without NaCl and inability to grow at pH 5 and at 10–15 °C under the same conditions as described in Lai et al. (2011a, b) (data not shown). Thus, on the basis of the data from the present polyphasic study, strains CL-SC21^T and CL-SC22 are considered to represent a single novel species of the genus *Nitratireductor*, for which the name *Nitratireductor aquimarinus* sp. nov. is proposed.

Description of *Nitratireductor aquimarinus* sp. nov.

Nitratireductor aquimarinus (a.qui ma.ri’'nus. L. fem. n. *aqua* water; L. adj. *marinus*,-a,-um marine, of the sea; N.L. masc. adj. *aquimarinus* pertaining to seawater).

Cells are rod-shaped, approximately 0.4–0.7 μm wide and 1.3–2.0 μm long. Cells are Gram-negative-staining, strictly aerobic and motile by means of a polar flagellum. After 3 days on TSA and MA plates at 35 °C, colonies are smooth, circular, convex and creamy in colour. Growth occurs at 20–40 °C (optimum 30–35 °C), at pH 6.5–9.0 (optimum pH 7.7–8.2) and in the presence of 1–7% (w/v) NaCl (optimum 3–4% NaCl). Positive for oxidase and catalase. Nitrate is reduced. According to API ZYM tests, positive for acid phosphatase, alkaline phosphatase, cystine arylamidase (weak), esterase (C4), esterase lipase (C8; weak for strain CL-SC22), leucine arylamidase, naphthol-AS-BI-phosphohydrolase, trypsin, valine arylamidase (weak) and N-acetyl-β-glucosaminidase activities, but negative for z-chymotrypsin, z-fucosidase, z-galactosidase, β-galactosidase, z-glucosidase, β-glucosidase, β-gluconoridase, lipase (C14) and z-mannosidase activities. According to API 20NE tests, positive for nitrate reduction, β-galactosidase, urease, and assimilation of arabinose, N-acetylglucosamine, citrate, glucose and mannose, but negative for arginine dihydrolase, aesculin hydrolysis, gelatinase, glucose fermentation, indole production, and assimilation of adipate, caprate, gluconate, malate, malonate, mannitol and phenylacetate. Cells are sensitive to (μg per disc) ampicillin (6), chloramphenicol (20), cephalixin (20), erythromycin (10), gentamicin (6), kanamycin (20), polymyxin B (25), streptomycin (6), tetracycline (20) and vancomycin (20), but resistant to nalidixic acid (20), mitomycin C (0.6) and penicillin G (6). The major cellular fatty acids are C_{18:1ω7c} and C_{19:0ω8c} cyclo. The DNA G+C content is 56.7–57.1 mol%.

The type strain, CL-SC21^T (=KCCM 90090^T=JCM 17288^T), was isolated from a culture of the diatom *Skeletonema costatum*. CL-SC22, isolated from the same source, is a second strain of the species.

Acknowledgements

We acknowledge the expert technical support of Ms In-Sung Lee (electron microscopy) of the National Center for Inter-university Research Facilities at Seoul National University. This work was supported in part by the BK21 project of the Korean Government, by the MarineBio Technology Program funded by the Ministry of Land, Transport, and Maritime Affairs (MLTM), Korea, and by the Ministry of Maritime Affairs and Fisheries (the Korea EAST-1 program).

References

Nitratreductor aquimarinus sp. nov.

