1887

Abstract

We have undertaken a polyphasic taxonomic study of two halophilic, Gram-negative bacterial strains, N12 and B-100, that produce sulphated exopolysaccharides with biological activity. They were isolated from two different saline soil samples. Both strains grow at NaCl concentrations within the range 3–15 % (w/v) [optimum 5–10 % (w/v)], at 15–37 °C (optimum 20–32 °C) and at pH 6–8 (optimum pH 7–8). Their 16S rRNA gene sequences indicate that they belong to the genus in the class . Their closest relative is , to which our strains show maximum 16S rRNA gene sequence similarity values of 98.7 % (N12) and 98.3 % (B-100). Their DNA G+C contents are 61.9 and 63.8 mol%, respectively. The results of DNA–DNA hybridizations showed 43.9 % relatedness between strain N12 and CECT 7281, 30.5 % between N12 and CECT 5797, 39.2 % between N12 and CECT 7341, 46.3 % between N12 and CECT 5298, 52.9 % between N12 and LMG 23976, 51.3 % between N12 and JCM 12237 and 100 % between strains N12 and B-100. The major fatty acids of strain N12 are C 3-OH (5.42 %), C iso 2-OH/Cω7 (17.37 %), C (21.62 %) and Cω7 (49.19 %). The proposed name for the novel species is sp. nov Strain N12 ( = CECT 7744  = LMG 25812) is the type strain.

Funding
This study was supported by the:
  • Spanish Ministerio de Educación y Ciencia (Award CGL2008-02399/BOS and CGL 2005-05947)
  • Consejería de Educación, Ciencia y Empresa, Junta de Andalucía (Award P06-CVI-01850)
  • Plan Andaluz de Investigación, Spain
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.026369-0
2011-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/10/2508.html?itemId=/content/journal/ijsem/10.1099/ijs.0.026369-0&mimeType=html&fmt=ahah

References

  1. Ananina L. N., Plotnikova E. G., Gavrish E., Demakov V. A., Evtushenko L. I. 2007; Salinicola socius gen. nov., sp. nov., a moderately halophilic bacterium from a naphthalene-utilizing microbial association. Mikrobiologia 76:369–376 (in Russian)
    [Google Scholar]
  2. Arahal D. R., García M. T., Ludwig W., Schleifer K. H., Ventosa A. 2001; Transfer of Halomonas canadensis and Halomonas israelensis to the genus Chromohalobacter as Chromohalobacter canadensis comb. nov. and Chromohalobacter israelensis comb. nov.. Int J Syst Evol Microbiol 51:1443–1448[PubMed]
    [Google Scholar]
  3. Arahal D. R., Castillo A. M., Ludwig W., Schleifer K. H., Ventosa A. 2002; Proposal of Cobetia marina gen. nov., comb. nov., within the family Halomonadaceae, to include the species Halomonas marina . Syst Appl Microbiol 25:207–211 [View Article][PubMed]
    [Google Scholar]
  4. Arahal D. R., Vreeland R. H., Litchfield C. D., Mormile M. R., Tindall B. J., Oren A., Béjar V., Quesada E., Ventosa A. 2007; Recommended minimal standards for describing new taxa of the family Halomonadaceae . Int J Syst Evol Microbiol 57:2436–2446 [View Article][PubMed]
    [Google Scholar]
  5. Arena A., Gugliandolo C., Stassi G., Pavone B., Iannello D., Bisignano G., Maugeri T. L. 2009; An exopolysaccharide produced by Geobacillus thermodenitrificans strain B3-72: antiviral activity on immunocompetent cells. Immunol Lett 123:132–137 [View Article][PubMed]
    [Google Scholar]
  6. Arias S., del Moral A., Ferrer M. R., Tallon R., Quesada E., Béjar V. 2003; Mauran, an exopolysaccharide produced by the halophilic bacterium Halomonas maura, with a novel composition and interesting properties for biotechnology. Extremophiles 7:319–326 [View Article][PubMed]
    [Google Scholar]
  7. Bauer A. W., Kirby W. M., Sherris J. C., Turck M. 1966; Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45:493–496[PubMed]
    [Google Scholar]
  8. Béjar V., Llamas I., Calvo C., Quesada E. 1998; Characterization of exopolysaccharides produced by 19 halophilic strains of the species Halomonas eurihalina . J Biotechnol 61:135–141 [View Article]
    [Google Scholar]
  9. Ben Ali Gam Z., Abdelkafi S., Casalot L., Tholozan J. L., Oueslati R., Labat M. 2007; Modicisalibacter tunisiensis gen. nov., sp. nov., an aerobic, moderately halophilic bacterium isolated from an oilfield-water injection sample, and emended description of the family Halomonadaceae Franzmann et al. 1989 emend Dobson and Franzmann 1996 emend. Ntougias et al. 2007. Int J Syst Evol Microbiol 57:2307–2313 [View Article][PubMed]
    [Google Scholar]
  10. Bouchotroch S., Quesada E., Izquierdo I., Rodríguez M., Béjar V. 2000; Bacterial exopolysaccharides produced by newly discovered bacteria belonging to the genus Halomonas, isolated from hypersaline habitats in Morocco. J Ind Microbiol Biotechnol 24:374–378 [View Article]
    [Google Scholar]
  11. Bouchotroch S., Quesada E., del Moral A., Llamas I., Béjar V. 2001; Halomonas maura sp. nov., a novel moderately halophilic, exopolysaccharide-producing bacterium. Int J Syst Evol Microbiol 51:1625–1632 [View Article][PubMed]
    [Google Scholar]
  12. Calvo C., Ferrer M. R., Martínez-Checa F., Béjar V., Quesada E. 1995; Some rheological properties of the extracellular polysaccharide produced by Volcaniella eurihalina F2-7. Appl Biochem Biotechnol 55:45–54 [View Article]
    [Google Scholar]
  13. Calvo C., Martínez-Checa F., Mota A., Béjar V., Quesada E. 1998; Effect of cations, pH and sulphate content on the viscosity and emulsifying activity of the Halomonas eurihalina exopolysaccharide. J Ind Microbiol Biotechnol 20:205–209 [View Article]
    [Google Scholar]
  14. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [View Article][PubMed]
    [Google Scholar]
  15. Chun J., Lee J.-H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [View Article][PubMed]
    [Google Scholar]
  16. Cowan S. T., Steel K. J. 1965 Manual for the Identification of Medical Bacteria London: Cambridge University Press;
    [Google Scholar]
  17. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [View Article][PubMed]
    [Google Scholar]
  18. Dobson S. J., Franzmann P. D. 1996; Unification of the genera Deleya (Bauman et al., 1993), Halomonas (Vreeland et al., 1980), and Halovibrio (Fendrich, 1988) and the species Paracoccus halodenitrificans (Robinson and Gibbons, 1952) into a single genus, Halomonas, and placement of the genus Zymobacter in the family Halomonadaceae . Int J Syst Bacteriol 46:550–558 [View Article]
    [Google Scholar]
  19. Euzeby J. P. 2011; List of Prokaryotic Names with Standing in Nomenclature. http://www.bacterio.cict.fr/
  20. Ferragut C., Leclerc H. 1976; Étude comparative des méthodes de détermination du T m de l’ADN bactérien. Ann Microbiol 127A:223–235 (in French)
    [Google Scholar]
  21. Franzmann P. D., Wehmeyer U., Stackebrandt E. 1988; Halomonadaceae fam. nov., a new family of the class Proteobacteria to accommodate the genera Halomonas and Deleya . Syst Appl Microbiol 11:16–19 [CrossRef]
    [Google Scholar]
  22. Garriga M., Ehrmann M. A., Arnau J., Hugas M., Vogel R. F. 1998; Carnimonas nigrificans gen. nov., sp. nov., a bacterial causative agent for black spot formation on cured meat products. Int J Syst Bacteriol 48:677–686 [View Article][PubMed]
    [Google Scholar]
  23. Garrity G. M., Bell J. A., Liburn T. 2005; Family IV. Halomomadaceae Franzmann, Wehmeyer and Stackebrandt 1989, 205VP emend. Dobson and Franzmann, 1996, 558. In Bergey’s Manual of Systematic Bacteriology, 2nd edn. vol. 2 p. 300 Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M. New York: Springer;
    [Google Scholar]
  24. González-Domenech C. M., Béjar V., Martínez-Checa F., Quesada E. 2008a; Halomonas nitroreducens sp. nov., a novel nitrate- and nitrite-reducing species. Int J Syst Evol Microbiol 58:872–876 [View Article][PubMed]
    [Google Scholar]
  25. González-Domenech C. M., Martínez-Checa F., Quesada E., Béjar V. 2008b; Halomonas cerina sp. nov., a moderately halophilic, denitrifying, exopolysaccharide-producing bacterium. Int J Syst Evol Microbiol 58:803–809 [View Article][PubMed]
    [Google Scholar]
  26. González-Domenech C. M., Martínez-Checa F., Quesada E., Béjar V. 2009; Halomonas fontilapidosi sp. nov., a moderately halophilic, denitrifying bacterium. Int J Syst Evol Microbiol 59:1290–1296 [View Article][PubMed]
    [Google Scholar]
  27. Guo J., Zhu T., Collins L., Xiao Z. X., Kim S. H., Chen C. Y. 2007; Modulation of lung cancer growth arrest and apoptosis by Phellinus linteus . Mol Carcinog 46:144–154 [View Article][PubMed]
    [Google Scholar]
  28. Hasui M., Matsuda M., Okutani K., Shigeta S. 1995; In vitro antiviral actitivies of sulfated polysaccharides from marine microalga (Cochlodinium polykrikoides) against human immunodeficiency virus and other enveloped viruses. J Biol Macromol 17:293–297 [View Article]
    [Google Scholar]
  29. Hayashi T., Hayashi K., Maeda M., Kojima I. 1996a; Calcium spirulan, an inhibitor of enveloped virus replication, from a blue-green alga Spirulina platensis . J Nat Prod 59:83–87 [View Article][PubMed]
    [Google Scholar]
  30. Hayashi K., Hayashi T., Kojima I. 1996b; A natural sulfated polysaccharide, calcium spirulan, isolated from Spirulina platensis: in vitro and ex vivo evaluation of anti-herpes simplex virus and anti-human immunodeficiency virus activities. AIDS Res Hum Retroviruses 12:1463–1471 [View Article][PubMed]
    [Google Scholar]
  31. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  32. Itoh H., Noda H., Amano H., Zhuaug C., Mizuno T., Ito H. 1993; Antitumor activity and immunological properties of marine algal polysaccharides, especially fucoidan, prepared from Sargassum thunbergii of Phaeophyceae . Anticancer Res 13:6A2045–2052[PubMed]
    [Google Scholar]
  33. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism vol. 3 pp. 21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  34. Koser S. A. 1923; Utilization of the salts of organic acids by the colon-aerogenes group. J Bacteriol 8:493–520[PubMed]
    [Google Scholar]
  35. Kwon M. J., Nam T. J. 2006; Porphyran induces apoptosis related signal pathway in AGS gastric cancer cell lines. Life Sci 79:1956–1962 [View Article][PubMed]
    [Google Scholar]
  36. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp. 115–175 Edited by Stackebrandt E., Goodfellow M. Chichester, UK: Wiley;
    [Google Scholar]
  37. Lim J.-M., Yoon J.-H., Lee J.-C., Jeon C. O., Park D.-J., Sung C., Kim C.-J. 2004; Halomonas koreensis sp. nov., a novel moderately halophilic bacterium isolated from a solar saltern in Korea. Int J Syst Evol Microbiol 54:2037–2042 [View Article][PubMed]
    [Google Scholar]
  38. Lind E., Ursing J. 1986; Clinical strains of Enterobacter agglomerans (synonyms: Erwinia herbicola, Erwinia milletiae) identified by DNA-DNA-hybridization. Acta Pathol Microbiol Immunol Scand [B] 94:205–213[PubMed]
    [Google Scholar]
  39. Llamas I., Mata J. A., Tallon R., Bressollier P., Urdaci M. C., Quesada E., Béjar V. 2010; Characterization of the exopolysaccharide produced by Salipiger mucosus A3, a halophilic species belonging to the Alphaproteobacteria, isolated on the Spanish Mediterranean seaboard. Mar Drugs 8:2240–2251 [View Article][PubMed]
    [Google Scholar]
  40. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118 [View Article][PubMed]
    [Google Scholar]
  41. Martínez-Cánovas M. J., Béjar V., Martínez-Checa F., Quesada E. 2004a; Halomonas anticariensis sp. nov., from Fuente de Piedra, a saline-wetland wildfowl reserve in Malaga, southern Spain. Int J Syst Evol Microbiol 54:1329–1332 [View Article][PubMed]
    [Google Scholar]
  42. Martínez-Cánovas M. J., Quesada E., Llamas I., Béjar V. 2004b; Halomonas ventosae sp. nov., a moderately halophilic, denitrifying, exopolysaccharide-producing bacterium. Int J Syst Evol Microbiol 54:733–737 [View Article][PubMed]
    [Google Scholar]
  43. Martínez-Cánovas M. J., Quesada E., Martínez-Checa F., Béjar V. 2004c; A taxonomic study to establish the relationship between exopolysaccharide-producing bacterial strains living in diverse hypersaline habitats. Curr Microbiol 48:348–353 [View Article][PubMed]
    [Google Scholar]
  44. Martínez-Checa F., Béjar V., Martínez-Cánovas M. J., Llamas I., Quesada E. 2005; Halomonas almeriensis sp. nov., a moderately halophilic, exopolysaccharide-producing bacterium from Cabo de Gata, Almería, south-east Spain. Int J Syst Evol Microbiol 55:2007–2011 [View Article][PubMed]
    [Google Scholar]
  45. Mata J. A., Martínez-Cánovas J., Quesada E., Béjar V. 2002; A detailed phenotypic characterisation of the type strains of Halomonas species. Syst Appl Microbiol 25:360–375 [View Article][PubMed]
    [Google Scholar]
  46. Mata J. A., Béjar V., Llamas I., Arias S., Bressollier P., Tallon R., Urdaci M. C., Quesada E. 2006; Exopolysaccharides produced by the recently described halophilic bacteria Halomonas ventosae and Halomonas anticariensis . Res Microbiol 157:827–835 [View Article][PubMed]
    [Google Scholar]
  47. Mata J. A., Béjar V., Bressollier P., Tallon R., Urdaci M. C., Quesada E., Llamas I. 2008; Characterization of exopolysaccharides produced by three moderately halophilic bacteria belonging to the family Alteromonadaceae . J Appl Microbiol 105:521–528 [View Article][PubMed]
    [Google Scholar]
  48. Matou S., Colliec-Jouault S., Galy-Fauroux I., Ratiskol J., Sinquin C., Guezennec J., Fischer A. M., Helley D. 2005; Effect of an oversulfated exopolysaccharide on angiogenesis induced by fibroblast growth factor-2 or vascular endothelial growth factor in vitro . Biochem Pharmacol 69:751–759 [View Article][PubMed]
    [Google Scholar]
  49. Moraine R. A., Rogovin P. 1966; Kinetics of polysaccharide B-1459 fermentation. Biotechnol Bioeng 8:511–524 [View Article]
    [Google Scholar]
  50. Ntougias S., Zervakis G. I., Fasseas C. 2007; Halotalea alkalilenta gen. nov., sp. nov., a novel osmotolerant and alkalitolerant bacterium from alkaline olive mill wastes, and emended description of the family Halomonadaceae Franzmann et al. 1989, emend. Dobson and Franzmann 1996. Int J Syst Evol Microbiol 57:1975–1983 [View Article][PubMed]
    [Google Scholar]
  51. Okamoto T., Taguchi H., Nakamura K., Ikenaga H., Kuraishi H., Yamasato K. 1993; Zymobacter palmae gen. nov., sp. nov., a new ethanol-fermenting peritrichous bacterium isolated from palm sap. Arch Microbiol 160:333–337 [View Article][PubMed]
    [Google Scholar]
  52. Owen R. J., Hill L. R. 1979; The estimation of base compositions, base pairing and genome sizes of bacterial deoxyribonucleic acids. In Identification Methods for Microbiologists (Society for Applied Bacteriology Technical Series no. 14), 2nd edn. pp. 277–296 Edited by Skinner F. A., Lovelock D. W. London: Academic Press;
    [Google Scholar]
  53. Owen R. J., Pitcher D. 1985; Current methods for estimating DNA composition and levels of DNA-DNA hybridization. In Chemical Methods in Bacterial Systematics pp. 67–93 Edited by Goodfellow M., Minnikin E. London: Academic Press;
    [Google Scholar]
  54. Quesada E., Ventosa A., Rodríguez-Valera F., Megias L., Ramos-Cormenzana A. 1983; Numerical taxonomy of moderately halophilic Gram-negative bacteria from hypersaline soils. J Gen Microbiol 129:2649–2657
    [Google Scholar]
  55. Quesada E., Valderrama M. J., Béjar V., Ventosa A., Gutierrez M. C., Ruiz-Berraquero F., Ramos-Cormenzana A. 1990; Volcaniella eurihalina gen. nov., sp. nov., a moderately halophilic nonmotile gram-negative rod. Int J Syst Bacteriol 40:261–267 [View Article]
    [Google Scholar]
  56. Quesada E., Béjar V., Calvo C. 1993; Exopolysaccharide production by Volcaniella eurihalina . Experientia 49:1037–1041 [View Article]
    [Google Scholar]
  57. Quesada E., Béjar V., Ferrer M. R., Calvo C., Llamas I., Martínez-Checa F., Arias S., Ruíz-García C., Páez R. et al. other authors 2004; Moderately halophilic exopolysaccharide-producing bacteria. In Halophilic microorganisms pp. 295–314 Edited by Ventosa A. Berlin: Springer;
    [Google Scholar]
  58. Riou D., Colliec-Jouault S., Pinczon du Sel D., Bósch S., Siavoshian S., Le Bert V., Tomasoni C., Sinquin C., Durand P., Roussakis C. 1996; Antitumor and antiproliferative effects of a fucan extracted from Ascophyllum nodosum against a non-small-cell bronchopulmonary carcinoma line. Anticancer Res 16:3A1213–1218[PubMed]
    [Google Scholar]
  59. Rodríguez-Valera F., Ruiz-Berraquero F., Ramos-Cormenzana A. 1981; Characteristics of the heterotropic bacterial populations in hypersaline environments of different salt concentrations. Microb Ecol 7:235–243 [View Article]
    [Google Scholar]
  60. Ruiz-Ruiz C., Srivastava G. K., Carranza D., Mata J. A., Llamas I., Santamaría M., Quesada E., Molina I. J. 2011; An exopolysaccharide produced by the novel halophilic bacterium Halomonas stenophila strain B100 selectively induces apoptosis in human T leukaemia cells. Appl Microbiol Biotechnol 89:345–355 [View Article][PubMed]
    [Google Scholar]
  61. Sánchez-Porro C., de la Haba R. R., Soto-Ramírez N., Márquez M. C., Montalvo-Rodríguez R., Ventosa A. 2009; Description of Kushneria aurantia gen. nov., sp. nov., a novel member of the family Halomonadaceae, and a proposal for reclassification of Halomonas marisflavi as Kushneria marisflavi comb. nov., of Halomonas indalinina as Kushneria indalinina comb. nov. and of Halomonas avicenniae as Kushneria avicenniae comb. nov.. Int J Syst Evol Microbiol 59:397–405 [View Article][PubMed]
    [Google Scholar]
  62. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bateriology. Int J Syst Bacteriol 44:846–849 [View Article]
    [Google Scholar]
  63. Stackebrandt E., Frederiksen W., Garrity G. M., Grimont P. A. D., Kämpfer P., Maiden M. C. J., Nesme X., Rosselló-Mora R., Swings J. et al. other authors 2002; Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047 [View Article][PubMed]
    [Google Scholar]
  64. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [View Article][PubMed]
    [Google Scholar]
  65. Thompson J. D., Gibson T. J., Plewniak K., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignments aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article]
    [Google Scholar]
  66. Valderrama M. J., Quesada E., Béjar V., Ventosa A., Gutiérrez M. C., Ruiz-Berraquero F., Ramos-Cormenzana A. 1991; Deleya salina sp. nov., a moderately halophilic gram-negative bacterium. Int J Syst Bacteriol 41:377–384 [View Article]
    [Google Scholar]
  67. Ventosa A., Quesada E., Rodríguez-Valera F., Ruíz-Berraquero F., Ramos-Cormenzana A. 1982; Numerical taxonomy of moderately halophilic Gram-negative rods. J Gen Microbiol 128:1959–1968
    [Google Scholar]
  68. Ventosa A., Gutierrez M. C., Garcia M. T., Ruiz-Berraquero F. 1989; Classification of “Chromobacterium marismortui” in a new genus, Chromohalobacter gen. nov., as Chromohalobacter marismortui comb. nov., nom. rev.. Int J Syst Bacteriol 39:382–386 [View Article]
    [Google Scholar]
  69. Vreeland R. H., Litchfield C. D., Martin E. L., Elliot E. 1980; Halomonas elongata, a new genus and species of extremely salt-tolerant bacteria. Int J Syst Bacteriol 30:485–495 [View Article]
    [Google Scholar]
  70. Wang Y., Tang S. K., Lou K., Lee J. C., Jeon C. O., Xu L. H., Kim C. J., Li W. J. 2009; Aidingimonas halophila gen. nov., sp. nov., a moderately halophilic bacterium isolated from a salt lake. Int J Syst Evol Microbiol 59:3088–3094 [View Article][PubMed]
    [Google Scholar]
  71. Witvrouw M., De Clercq E. 1997; Sulfated polysaccharides extracted from sea algae as potential antiviral drugs. Gen Pharmacol 29:497–511 [View Article][PubMed]
    [Google Scholar]
  72. Zhu T., Guo J., Collins L., Kelly J., Xiao Z. J., Kim S. H., Chen C. Y. 2007; Phellinus linteus activates different pathways to induce apoptosis in prostate cancer cells. Br J Cancer 96:583–590 [View Article][PubMed]
    [Google Scholar]
  73. Ziemke F., Höfle M. G., Lalucat J., Rosselló-Mora R. 1998; Reclassification of Shewanella putrefaciens Owen’s genomic group II as Shewanella baltica sp. nov.. Int J Syst Bacteriol 48:179–186 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.026369-0
Loading
/content/journal/ijsem/10.1099/ijs.0.026369-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error