Streptomyces hyderabadensis sp. nov., an actinomycete isolated from soil

T. V. K. Reddy,¹ Shaik Mahmood,¹ Laskaris Paris,² Y. Harish Kumar Reddy,³ E. M. H. Wellington² and M. Mohammed Idris⁴

Correspondence
T. V. K. Reddy
reddykishoretv@gmail.com

¹Microbiology Laboratory, Department of Botany, University College of Science, Osmania University, Hyderabad, 500007, India
²Department of Biological Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
³Department of Microbiology, University College of Science, Osmania University, Hyderabad, 500007, India
⁴Centre for Cellular and Molecular Biology, Uppal road, Hyderabad 500007, India

A novel actinomycete, designated strain OU-40T, was isolated from farm soil collected from the Hyderabad region of Andhra Pradesh, southern India. The strain was found to have morphological and chemotaxonomic characteristics typical of species of the genus Streptomyces. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain OU-40T belonged to the genus Streptomyces, and was related most closely to Streptomyces pactum NBRC 13433T (99.0 % sequence similarity), Streptomyces olivaceus NBRC 12805T (99.0 %) and Streptomyces parvulus NBRC 13193T (98.8 %). Strain OU-40T could be distinguished from the type strains of its closest phylogenetic relatives based on levels of DNA–DNA relatedness and comparison of morphological and phenotypic data. It is therefore concluded that strain OU-40T represents a novel species of the genus Streptomyces, for which the name Streptomyces hyderabadensis sp. nov. is proposed. The type strain is OU-40T (=CCTCC AA 209024T =PCM 2692T).

The genus Streptomyces was proposed by Waksman & Henrici (1943) to accommodate aerobic, spore-forming actinomycetes. At the time of writing, the genus comprises nearly 550 recognized species (Euzéby, 2009). Most species of the genus Streptomyces are able to form an extensively branched substrate mycelium and are also able to produce aerial hyphae that typically differentiate into chains of spores. Species of the genus Streptomyces have LL-diaminopimelic acid in the cell-wall peptidoglycan but no characteristic sugars (wall chemotype I sensu Lechevalier & Lechevalier, 1970), and possess DNA rich in G+C (Williams et al., 1983; Manfio et al., 1995). The streptomycetes, producers of more than half of the 10 000 documented bioactive compounds, such as antibiotics, enzymes, inhibitors and pharmacologically active agents, have offered over 50 years of interest to industry and academia (Anderson & Wellington, 2001; Berdy, 2005). During the course of our screening programme for antibiotics, strain OU-40T was isolated from a soil sample collected from farm soil, Hyderabad region, Andhra Pradesh, southern India, and was provisionally assigned to the genus Streptomyces based on its chemotaxonomic and morphological properties. A polyphasic taxonomic investigation based on a combination of phenotypic and genotypic characteristics revealed that strain OU-40T represents a novel species of the genus Streptomyces.

Strain OU-40T was isolated by using a modified protocol developed by Atalan et al. (2000) on actinomycetes isolation agar (HiMedia) supplemented with cycloheximide (50 μg ml⁻¹) and nystatin (25 μg ml⁻¹). The agar was seeded with the soil suspension and incubated at 28 °C for 14 days (Olson, 1968). The isolate was maintained on oatmeal agar slants (International Streptomyces Project medium 3, ISP 3) at 4 °C and as glycerol suspensions (20 %, v/v) at −20 °C.

The morphological characteristics of strain OU-40T were examined by light and scanning electron microscopy of 21-day-old cultures on oatmeal agar (Williams & Davies, 1967). The coverslip technique (Zhou et al., 1998; Kawato & Shinobu, 1959) was used to observe hyphae and spore chain morphology by light microscopy. Spore chain morphology and spore surface ornamentation were studied by examining gold-coated dehydrated specimens with a Jeol model JSM 5600 scanning electron microscope. Cultural characteristics were observed on a number of agar media following incubation at 28 °C for 14 days.
Strain OU-40T was examined for a range of physiological and biochemical properties as described by Shirling & Gottlieb (1966) and Williams et al. (1983). Colony colour was determined with reference to Kelly (1964).

Cells for most of the chemotaxonomic studies were obtained after incubation at 28 °C for 1 week in shake flasks of ISP 2 broth. The isomer of diaminopimelic acid and whole-cell sugars were analysed following the procedures developed by Hasegawa et al. (1983) and Lechevalier & Lechevalier (1980). Menaquiones were extracted and purified according to Collins (1985) and were analysed by HPLC. Analyses of fatty acids were performed by GC by using the transmethylation technique described by Lepage & Roy (1984). The isolate was grown for 7 days with shaking at 28 °C in modified Bennett’s broth, both the supernatant and mycelial mass of a culture were extracted with ethyl acetate and acetone, and antimicrobial activity was determined via the paper disc diffusion method (Bauer et al., 1966).

The genomic DNA of strain OU-40T was isolated by using the Kirby extraction method as described by Kieser et al. (2000). Amplification of the 16S rRNA gene was carried out as described by Edwards et al. (1989). Pairwise sequence similarities were calculated by using a global alignment algorithm, which was implemented with the EzTaxon server (Chun et al., 2007). Phylogenetic analyses were performed by using the software package MEGA 4.0 (Tamura et al., 2007) after multiple alignment of the sequence data with CLUSTAL_X (Thompson et al., 1997). Distances were calculated by using distance options according to Jukes & Cantor (1969) and clustering was performed by using the neighbour-joining method (Saitou & Nei, 1987). Minimum-evolution (Rzhetsky & Nei, 1992) and maximum-parsimony (Eck & Dayhoff, 1966) trees were generated by means of methods contained within the MEGA 4.0 software package. Bootstrap analyses were used to evaluate the tree topology based on 1000 resamplings (Felsenstein, 1985). The DNA G + C content of strain OU-40T was determined by using the thermal denaturation method (Mandel & Marmur, 1968).

DNA–DNA hybridization experiments were conducted by using the dot-blot hybridization method (Chung et al., 1999) and a simple fluorimetric method was used to estimate levels of DNA–DNA relatedness based on thermal denaturation temperatures (Gonzalez & Saiz-Jimenez, 2005; Reddy et al., 2010). Genomic DNA (200 and 400 ng as homoduplex and heteroduplex DNA, respectively) was used for melting curve analysis in a 10 μl reaction volume with a final 1× concentration of SYBR green. Analyses of the melting curves were performed by using 10 min initial denaturation and 5 min renaturation, followed by melting curve analysis from 20 to 90 °C (ramping at 2 °C min-1). Melting curve analyses were performed in triplicate. ΔT\textsubscript{m} values between homologous and hybrid DNA of 5 °C or higher were considered as corresponding to distinct microbial species.

The chemical and morphological properties of strain OU-40T were consistent with its assignment to the genus *Streptomyces* (Williams et al., 1989; Manfio et al., 1995). The strain formed extensively branched substrate mycelia and aerial hyphae which carried smooth-surfaced oval spores in long straight chains (Fig. 1). The cultural characteristics of strain OU-40T on various standard media are given in Table 1. The aerial mycelium of strain OU-40T varied from white to grey on different media, and substrate mycelium from brown to light yellow. No diffusible pigments were produced and no melanin was observed on peptone yeast extract iron agar or tyrosine agar.

The strain contained L- diaminopimelic acid in the peptidoglycan of the cell wall and no characteristic sugars, indicating that it exhibits wall chemotype I (Lechevalier & Lechevalier, 1970). It contained MK-9 (H\textsubscript{6}, 68 %; H\textsubscript{8}, 21 %; H\textsubscript{4}, 11 %) as the predominant isoprenologues. The major fatty acids were iso-C\textsubscript{16}:0 (17 %), iso-C\textsubscript{15}:0 (19 %), iso-C\textsubscript{17}:0 (15 %), anteiso-C\textsubscript{15}:0 (14 %), anteiso-C\textsubscript{17}:0 (9 %), C\textsubscript{16}:0 (8 %) and iso-C\textsubscript{14}:0 (5 %), a profile that is consistent with those for species of the genus *Streptomyces*. The G + C content of the DNA of strain OU-40T was 70.2 mol%.

![Fig. 1. Scanning electron micrographs showing the morphology of cells of strain OU-40T grown on oatmeal agar for 21 days at 28 °C. (a) Smooth oval-shaped spores; bar, 1 μm. (b) Long straight chains; bar, 5 μm.](http://ijs.sgmjournals.org)
The phenotypic characteristics of strain OU-40T were also consistent with its placement in the genus *Streptomyces*. An almost-complete 16S rRNA gene sequence of strain OU-40T (1402 nt) was determined in this study. A phylogenetic tree was reconstructed based on 16S rRNA gene sequences to show the relationship between strain OU-40T and related species of the genus *Streptomyces* (Fig. 2). Strain OU-40T formed a distinct phylectic line together with the type strains of *Streptomyces pactum*, *Streptomyces parvulus* and *Streptomyces olivaceus*. Strain OU-40T shared highest 16S rRNA gene sequence similarity with *Streptomyces pactum* NBRC 13433T (99.0 %), *Streptomyces olivaceus* NBRC 12805T (99.0 %), which corresponds to 14 nt differences out of 1402, and 98.8 % similarity with *Streptomyces parvulus* NBRC 13193T (16 nt differences out of 1402). Differential phenotypic characteristics between strain OU-40T and its closest phylogenetic relatives are given in Table 2.

DNA–DNA hybridization experiments were carried out between strain OU-40T and *S. parvulus* NBRC 13193T, *S. pactum* NBRC 13433T and *S. olivaceus* NBRC 12805T. Mean (±SD) levels of DNA–DNA relatedness between strain OU-40T and the type strains of *S. parvulus*, *S. pactum* and *S. olivaceus* were 40 ± 1.2, 35.6 ± 0.8 and 25 ± 1.6 %, respectively, significantly lower than the 70 % recommended cut-off for recognition of a genomic species (Wayne et al., 1987). The ΔT_m values obtained via the thermal denaturation method between the homologous (*S. parvulus* NBRC 13193T, *S. pactum* NBRC 13433T, *S. olivaceus* NBRC 12805T) and hybrid (strain OU-40T with *S. parvulus* NBRC 13193T, OU-40T with *S. pactum* NBRC 13433T and OU-40T with *S. olivaceus* NBRC 12805T) DNA were 10, 8 and 7.5 °C, respectively. A ΔT_m value of 5 °C or higher is considered to indicate separate bacterial species (Anderson & Wellington, 2001; Wayne et al., 1987; Rossello-Mora & Amann, 2001), and thus these data corroborate the findings of dot-blot analysis. Based on the genotypic and phenotypic evidence presented, strain OU-40T is considered to represent a novel species of the genus *Streptomyces*, for which the name Streptomyces hyderabadensis sp. nov. is proposed.

Description of Streptomyces hyderabadensis sp. nov.

Streptomyces hyderabadensis (hy.de.ra.bad.en'sis. N.L. masc. adj. hyderabadensis pertaining to the Hyderabad

<table>
<thead>
<tr>
<th>Agar medium</th>
<th>Growth</th>
<th>Colour of mycelium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yeast extract malt extract (ISP 2)</td>
<td>+++</td>
<td>Grey</td>
</tr>
<tr>
<td>Oatmeal (ISP 3)</td>
<td>+</td>
<td>Grey/white</td>
</tr>
<tr>
<td>Inorganic salts/starch (ISP 4)</td>
<td>+++</td>
<td>Grey</td>
</tr>
<tr>
<td>Glycerol/asparagine (ISP 5)</td>
<td>+</td>
<td>Dark grey</td>
</tr>
<tr>
<td>Tyrosine (ISP 7)</td>
<td>+</td>
<td>Grey</td>
</tr>
<tr>
<td>Czapek–Dox</td>
<td>+</td>
<td>Whitish grey</td>
</tr>
<tr>
<td>Nutrient agar</td>
<td>+</td>
<td>White</td>
</tr>
<tr>
<td>Modified Bennett’s</td>
<td>+++</td>
<td>Grey</td>
</tr>
</tbody>
</table>

The phenotypic characteristics of strain OU-40T were also consistent with its placement in the genus *Streptomyces*. An almost-complete 16S rRNA gene sequence of strain OU-40T (1402 nt) was determined in this study. A phylogenetic tree was reconstructed based on 16S rRNA gene sequences to show the relationship between strain OU-40T and related species of the genus *Streptomyces* (Fig. 2). Strain OU-40T formed a distinct phylectic line together with the type strains of *Streptomyces pactum*, *Streptomyces parvulus* and *Streptomyces olivaceus*. Strain OU-40T shared highest 16S rRNA gene sequence similarity with *Streptomyces pactum* NBRC 13433T (99.0 %), *Streptomyces olivaceus* NBRC 12805T (99.0 %), which corresponds to 14 nt differences out of 1402, and 98.8 % similarity with *Streptomyces parvulus* NBRC 13193T (16 nt differences out of 1402). Differential phenotypic characteristics between strain OU-40T and its closest phylogenetic relatives are given in Table 2.
Aerobic, Gram-positive actinomycete that forms an extensively branched substrate mycelium and aerial hyphae that differentiate into long straight spore chains. Spores are oval in shape with smooth surfaces. A brown substrate mycelium and a grey aerial spore mass are formed on glucose-yeast extract/malt agar (ISP 2). Melanin pigments are not produced on peptone yeast extract/iron agar or tyrosine agar, and no diffusible pigment is produced on all media tested. Growth occurs well at 20 and 37°C but not at 10°C. Grows at pH 6–11 and in the presence of 5% NaCl. Metabolizes hypoxanthine, tyrosine, urea, xanthine, gelatin, guanine, starch and Tween 80 but not casein, DNA, xylan or keratin. Galactose, glucose, mannitol, mannose, raffinose, arabinose, xylose, ribose, cellobiose, lactose, sucrose, maltose, trehalose, sodium acetate, sodium succinate and sodium pyruvate are used as sole carbon sources for energy and growth, but not fructose, rhamnose or cellulose. Proline, cysteine, histidine, phenylalanine, isoleucine and glycine are metabolized as sole nitrogen sources. Growth occurs in the presence of penicillin G (10 IU ml⁻¹), rifampicin (50 μg ml⁻¹) and ampicillin (30 μg ml⁻¹), but not in the presence of streptomycin (50 μg ml⁻¹), kanamycin (30 μg ml⁻¹) or novamycin (30 μg ml⁻¹). The predominant menaquinones are MK-9 (H₆, 68%; H₈, 21%; H₁₀, 11%). The major fatty acids are iso-C₁₆:0, iso-C₁₅:0, iso-C₁₇:0, anteiso-C₁₅:0, anteiso-C₁₇:0, C₁₆:0 and iso-C₁₄:0. Active against plant pathogenic moulds Aspergillus niger, Aspergillus flavus and Fusarium oxysporum and also against bacteria Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Bacillus subtilis. The genomic DNA G+C content of the type strain is 70.2 mol%.

The type strain, OU-40T (=CCTCC AA 209024T =PCM 2692T), was isolated from farm soil collected from the Hyderabad region of Andhra Pradesh, southern India.

Acknowledgements

We are grateful to Professor Dr D. P. Labeda for providing the S. parvulus culture and Mr Ravi Kumar (Indian Institute of Chemical Technology, Hyderabad) for his assistance with fatty acid and menaquinone analyses. We are also grateful to Dr Slawomir Ciesielski, University of Warmia and Mazury in Olsztyn, Poland, for deposition of the type strain. T. V. K. R. thanks the University Grant Commission (UGC), Government of India, for providing a fellowship.

References

