Cryptococcus agrionensis sp. nov., a basidiomycetous yeast of the acidic rock drainage ecoclade, isolated from an acidic aquatic environment of volcanic origin

Gabriel Russo,1 Diego Libkind,1 Ricardo J. Ulloa,1 Virginia de García,1 José P. Sampaio2 and Maríá R. van Broock1

1Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA-CONICET), Laboratorio de Microbiología Aplicada y Biotecnología, Centro Regional Universitario Bariloche, Universidad Nacional del Comahue (UNCo), Bariloche, Argentina
2Centro de Recursos Microbiológicos, Departamento de Ciencias da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal

Seventy-one strains were isolated from the River Agrio–Lake Caviahue acidic aquatic environment in Argentina. Strains were isolated mainly from the most acidic section of the river (pH 1.8–2.7). According to the mini/microsatellite-primed PCR technique and physiological data, these strains are representatives of a single novel species of the genus *Cryptococcus*. Analysis of the D1/D2 region of the large-subunit rRNA gene showed that the strains belong to the order Filobasidiales of the subphylum Agaricomycotina. The novel isolates formed a phylogenetic group with *Cryptococcus ibericus*, *Cryptococcus aciditolerans* and *Cryptococcus metallitolerans*, the most closely related species. This group, which is phylogenetically related to the Gastricus clade, is considered to be an ecoclade due to its peculiar ecology and physiology. The name *Cryptococcus agrionensis* sp. nov. is proposed to accommodate these isolates, with strain CRUB 1317T (=CBS 10799T=JCM 15321T) as the type strain.

The basidiomycetous yeasts of the genus *Cryptococcus* Vuillemin form a polyphyletic group comprising nearly 50 species, which are distributed in the orders Tremellales, Trichosporonales, Filobasidiales and Cystofilobasidiales of the subphylum Agaricomycotina (Fell et al., 2000; Bauer et al., 2006; Golubev et al., 2006). Species of the genus *Cryptococcus* have been isolated from a wide range of habitats, including extreme acidic aquatic environments, namely Rio Tinto (Spain), São Domingos mines (Portugal) and River Agrio–Lake Caviahue (RAC; Argentina). These environments are characterized by very low pH and high concentrations of heavy metals (López-Archilla et al., 2004; Gadanho et al., 2006; Russo et al., 2008).

The RAC is an acidic aquatic environment created by volcanic activity (Fehn et al., 2002). Its pH ranges from 1.5 at the source of the upper River Agrio (URA) to 6.4 at the lower River Agrio (LRA), 20 km downstream of the Caviahue Lake (Russo et al., 2008). In 2004, conductivity ranged from 17.86 mS cm⁻¹ (URA) to 0.24 mS cm⁻¹ (LRA) (Russo et al., 2008). Concentrations of metals such as Fe, Mg, Mn, Al and Zn were much higher at the source of the URA than at the LRA (mg l⁻¹: 2650.0 to 6.0; 1930.0 to 10.8; 79.8 to 0.1; 921.0 to 2.2; and 7.7 to lower than measurable levels, respectively) (Gammons et al., 2005).

During a study aimed at characterizing the biodiversity of the yeast community in the RAC aquatic system, 71 strains of an undescribed species of the genus *Cryptococcus* were isolated from six sampling sites along a section (approximately 30 km) of the RAC system. A detailed description of each sampling site has been presented previously by Russo et al. (2008). All strains showed a remarkable ability to survive in the extremely acidic waters (Russo et al., 2008) suggesting that they are autochthonous to this environment. Phylogenetic analyses based on the D1/D2 region of the 26S rRNA gene showed that *Cryptococcus ibericus* was the most closely related species. Interestingly, strains isolated from the RAC were included in a clade composed of *C. ibericus*, *Cryptococcus aciditolerans* and *Cryptococcus metallitolerans*, which were isolated from acid rock drainage (ARD) of the São Domingos pyrite mine in Portugal (Gadanho & Sampaio, 2008).

Abbreviations: ARD, acid rock drainage; LRA, lower River Agrio; MSP-PCR, mini/microsatellite-primed PCR; RAC, River Agrio–Lake Caviahue; URA, upper River Agrio.

The GenBank/EMBL/DDBJ accession numbers for the 16S rRNA gene sequences of *Cryptococcus agrionensis* sp. nov. CRUB 1317T and CRUB 1364 are EU627786 and EU627788, respectively.
2009). In this report, a novel species, *Cryptococcus agrionensis* sp. nov., of the order Filobasidiales, a putative autochthonous yeast of acidic environments, is described.

Novel strains were isolated from the RAC (37° 52’ S 71° 02’ W) in March 2004. Yeast isolations were performed using solid MYP medium (0.7 % malt extract, 0.05 % yeast extract, 0.25 % peptone-soytone, 2.0 % agar) and acidified (containing 2.5 M H₂SO₄) solid MYP medium (Russo et al., 2008). Conventional physiological and biochemical tests were performed according to Yarrow (1998). For determination of sexual compatibility, pairs of 2- to 4-day-old cultures were crossed on GSA medium (0.2 % glucose, 0.2 % peptone-soytone, 1.5 % agar), incubated at room temperature for 2 weeks and examined for production of sexual structures.

For DNA extraction, protocols described by Sampaio et al. (2001) and Libkind et al. (2003) were employed. The mini/microsatellite primed-PCR fingerprinting technique (MSP-PCR) was used according to Libkind et al. (2003). The minisatellite primer M13 (5’-GAGGGTGCCGGTTCT-3’) and the synthetic microsatellite oligonucleotide (GTG)₅ were used to obtain species-specific DNA fingerprints (Sampaio et al., 2001). For sequence analysis, DNA was amplified using rRNA primers ITS5 and LR6. Cycle sequencing of the D1/D2 region at the 5’ end of the 26S rRNA gene was performed according to Libkind et al. (2003). Sequences obtained were compared with those included in GenBank using BLAST (http://www.ncbi.nlm.nih.gov/). Sequence alignment was performed with MEGA 4 (Tamura et al., 2007) and adjusted visually. Phylogenetic and molecular evolutionary analyses were conducted using MEGA 4 with the neighbour-joining method (Saitou & Nei, 1987). Bootstrap analyses were based on 1000 random resamplings.

C. agrionensis sp. nov. was the most abundant yeast found in the acidic waters of the RAC volcanic environment and was present at all sampling sites with pH values ranging from 1.8 to 6.7 (Russo et al., 2008). Conventional physiological and biochemical tests were performed according to Yarrow (1998). For determination of sexual compatibility, pairs of 2- to 4-day-old cultures were crossed on GSA medium (0.2 % glucose, 0.2 % peptone-soytone, 1.5 % agar), incubated at room temperature for 2 weeks and examined for production of sexual structures.

Interestingly, phylogenetic analyses placed *C. agrionensis* sp. nov. in a separate clade composed of *C. ibericus* SDY 22¹ (=CBS 10871T) and *C. aciditolerans* SDY 81¹ (=CBS 10872T) and *C. metallitolerans* SDY 190¹ (=CBS 10873T), isolated from ARD of São Domingos pyrite mine. Differences between the species isolated in São Domingos mine and *C. agrionensis* sp. nov. are shown in Table 1. Another interesting result is that *C. agrionensis* sp. nov., as observed with the three species from the São Domingos mine, proved to be highly resistant to heavy metals such as Cd²⁺, Cu²⁺, Zn²⁺, Ni²⁺, and Co²⁺ (unpublished data), further demonstrating the close relatedness of these species and their probable extremophile nature.

The clade composed of the three *Cryptococcus* species isolated from Portugal was designated the ARD ecoclade because of their isolation origin and distinctive ecology (Gadanho & Sampaio, 2009). The term ‘ecoclade’ refers to species that are related phyletically and show salient physiological adaptations associated with the physico-chemical conditions present in their habitats. However, the three *Cryptococcus* species constituting the ecoclade were isolated from the same geographical region and could have been claimed to be part of a geographical clade rather than an ecoclade. The present work provides evidence that...
the ARD ecoclade is not restricted to the Iberian Pyrite region and demonstrates that members of this ecoclade may be found in acidic environments in general, originating both naturally and anthropically. These results further support the proposal of this phylogenetic group of yeasts as the ARD ecoclade.

Latin diagnosis of Cryptococcus agrionensis Russo, Libkind, Sampaio et van Broock sp. nov.

Table 1. Physiological and biochemical properties of C. agrionensis sp. nov., C. ibericus, C. aciditolerans and C. metallitolerans

Species: 1, C. agrionensis sp. nov.; 2, C. ibericus; 3, C. aciditolerans; 4, C. metallitolerans. Data are from this study and Gadanho & Sampaio (2009). +, Growth; –, no growth; w, weak growth.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assimilation of carbon compounds:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-Glucosamine</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>L-Rhamnose</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Sucrose</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Melezitose</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Erythritol</td>
<td>w</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>L-Sorbose</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>D-Ribose</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>D-Arabinose</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>Ribitol</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Galactitol</td>
<td>w</td>
<td>–</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>DL-Lactate</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Assimilation of nitrogen compounds:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potassium nitrate</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Sodium nitrite</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Cadaverine</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Growth in/at:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cycloheximide (0.01 %)</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>35 °C</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>37 °C</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Description of Cryptococcus agrionensis Russo, Libkind, Sampaio & van Broek sp. nov.

Cryptococcus agrionensis (a.gri.o.nen’sis. N.L. masc. adj. agrionensis of River Agrio, referring to the name of the river where most of the isolates were obtained).

Anamorphic yeast belonging to the subphylum Agaricomycotina, class Tremellomycetes, order Filobasidiales. Yeast cells after growth in MYP agar for 3 days at 20 °C are ellipsoidal (2–3 × 5–8 µm) and occur singly (Fig. 3). Budding is polar. Pure cultures are white and smooth, with entire margins. After 1 week, colonies become pale pink at 4 °C. All strains are positive for assimilation of the carbon compounds starch (weak), arbutin, cellobiose, citrate, D-arabinose, DL-lactate, galactose, galactitol (weak), D-glucuronate, glycerol (weak), D-glucono-1,5-lactone, myo-inositol, erythritol (delayed), lactose, L-arabinose, L-rhamnose, maltose, D-mannitol, melibiose, melezitose, raffinose, ribitol, D-ribose, D-salicin, sorbitol, L-sorbose, succinate, trehalose, D-xylose and xylitol (delayed), and the nitrogen compounds cadaverine, potassium nitrate and sodium nitrite. All strains are positive for growth at 30 °C. All strains are negative for fermentation of D-glucose, assimilation of the carbon compounds D-glucosamine and sucrose, and assimilation of the nitrogen compounds creatine, creatinine, ethylamine and L-lysine. All strains are negative for growth in vitamin-free medium, in 0.01 % and 0.1% cycloheximide and at 35 and 37 °C, and formation of starch-like compounds. Reaction with Diazonium Blue B and urease production are positive.

The type strain is CBS 10799T (=JCM 15321T=CRUB 1317T), isolated in 2004 from the RAC environment [subsurface water of the first sampling site of the upper River Agrio (pH 1.8; 37’ 52’ 71’ 06’ W)] by G. Russo. Strain CBS 10800 (=JCM 15322=CRUB 1364), isolated in 2004 from the RAC environment [subsurface water of the second sampling site of the upper River Agrio (pH 2.2; 37’ 53’ 71’ 04’ W)] by G. Russo, is a reference strain.

Acknowledgements

We thank the authorities of Parque Provincial Caviahue-Copahue (Argentina) for their courtesy and cooperation. This work was funded by the Universidad Nacional del Comahue (project B143), granted to M. R. v. B., and ANPCYT (project PICT 22200). Bilateral cooperation between Argentina and Portugal was supported by an SECYT-ICCTI cooperation agreement (PO/PA02-BI/002 and PO/07/017). G. R. was supported by a CONICET PhD fellowship. We would like to thank Dr C. Tognetti for her critical review of the manuscript, and Dr F. Pedrozo and Dr G. Baffico for providing data on the chemical composition of the RAC aquatic environment.

References

