Geobacter daltonii sp. nov., an Fe(III)- and uranium(VI)-reducing bacterium isolated from a shallow subsurface exposed to mixed heavy metal and hydrocarbon contamination

Om Prakash,¹ Thomas M. Gihring,¹ Dava D. Dalton,¹ Kuk-Jeong Chin,² Stefan J. Green,¹ Denise M. Akob,¹ Greg Wanger³ and Joel E. Kostka¹

¹Department of Oceanography, Florida State University, Tallahassee, FL 32306, USA
²Department of Biology, Georgia State University, Atlanta, GA 30303, USA
³J. Craig Venter Institute, San Diego, CA 92121, USA

An Fe(III)- and uranium(VI)-reducing bacterium, designated strain FRC-32T, was isolated from a contaminated subsurface of the USA Department of Energy Oak Ridge Field Research Center (ORFRC) in Oak Ridge, Tennessee, where the sediments are exposed to mixed waste contamination of radionuclides and hydrocarbons. Analyses of both 16S rRNA gene and the *Geobacteraceae*-specific citrate synthase (*gltA*) mRNA gene sequences retrieved from ORFRC sediments indicated that this strain was abundant and active in ORFRC subsurface sediments undergoing uranium(VI) bioremediation. The organism belonged to the subsurface clade of the genus *Geobacter* and shared 92–98 % 16S rRNA gene and 75–81 % *rpoB* gene sequence similarities with other recognized species of the genus. In comparison to its closest relative, *Geobacter uraniireducens* Rf4T, according to 16S rRNA gene sequence similarity, strain FRC-32T showed a DNA–DNA relatedness value of 21 %. Cells of strain FRC-32T were Gram-negative, non-spore-forming, curved rods, 1.0–1.5 μm long and 0.3–0.5 μm in diameter; the cells formed pink colonies in a semisolid cultivation medium, a characteristic feature of the genus *Geobacter*. The isolate was an obligate anaerobe, had temperature and pH optima for growth at 30 °C and pH 6.7–7.3, respectively, and could tolerate up to 0.7 % NaCl although growth was better in the absence of NaCl. Similar to other members of the *Geobacter* group, strain FRC-32T conserved energy for growth from the respiration of Fe(III)-oxyhydroxide coupled with the oxidation of acetate. Strain FRC-32T was metabolically versatile and, unlike its closest relative, *G. uraniireducens*, was capable of utilizing formate, butyrate and butanol as electron donors and soluble ferric iron (as ferric citrate) and elemental sulfur as electron acceptors. Growth on aromatic compounds including benzoate and toluene was predicted from preliminary genomic analyses and was confirmed through successive transfer with fumarate as the electron acceptor. Thus, based on genotypic, phylogenetic and phenotypic differences, strain FRC-32T is considered to represent a novel species of the genus *Geobacter*, for which the name *Geobacter daltonii* sp. nov. is proposed. The type strain is FRC-32T (=DSM 22248T=JCM 15807T).

Abbreviations: ANI, average nucleotide identity; DOE, Department of Energy; NCBI, National Center for Biotechnology Information; OD, optical density; ORFRC, Oak Ridge Field Research Center; *rpoB*, β-subunit of the DNA-direct RNA polymerase gene; SEM, scanning electron microscopy.

The GenBank/EMBL/DDBJ accession numbers for the 16S rRNA and *rpoB* gene sequences of strain FRC-32T are EU660516 and NC_011979, respectively.

Figures showing a neighbour-joining tree of complete *rpoB* gene sequences of *Geobacter* species, a scanning electron micrograph of cells of strain FRC-32T and graphs showing Fe(III) reduction and growth of strain FRC-32T with acetate as the electron donor and Fe(III)-oxyhydroxide as the sole electron acceptor are available as supplementary material with the online version of this paper.

¹Deceased.
Dissimilatory Fe(III) reduction is a critical electron-accepting process coupled to the terminal decomposition of organic matter in aquatic and marine sediments (Kostka et al., 1999; Thamdrup, 2000; Canfield et al., 2005) and may also impact global biogeochemical cycles by controlling the release of inorganic phosphate sequestered in Fe(III) oxide minerals and by suppressing methane emission (Roden & Wetzel, 1996). In contaminated subsurface environments, Fe(III)-reducing microorganisms have been shown to degrade or remove organic and inorganic contaminants and play a central role in remediation strategies for the protection of groundwater resources (Lovley, 2006).

When molecular techniques have been used to assess microbial community composition in environments where metal reduction is an important process, members of the Geobacteraceae in the Desulfuromonadales are often detected (Lovley, 2006). Studies of freshwater sediments (Stein et al., 2001), petroleum hydrocarbon-contaminated aquifers (Rooney-Varga et al., 1999), and radionuclide-contaminated subsurface sediments (Holmes et al., 2002; Anderson et al., 2003; North et al., 2004) have all revealed an abundance of sequences affiliated with members of the Geobacteraceae and specifically from the genus Geobacter.

Members of the genus Geobacter are Gram-negative, non-spore-forming, motile or non-motile, curved rod-shaped bacteria belonging to the family Geobacteraceae, order Desulfurimonadidae and class Deltaproteobacteria of the phylum Proteobacteria (Nevin et al., 2005; Shelobolina et al., 2008; Coates et al., 2001; Straub & Buchholz-Cleven, 2001; Shelobolina et al., 2007; Nevin et al., 2005, 2007). At the time of writing, 13 species of the genus Geobacter with validly published names had been reported (http://www.bacterio.cict.fr/g/geobacter.html). Phenotypic features shared by members of the genus Geobacter include an obligately anaerobic lifestyle, complete oxidation of carbon substrates to carbon dioxide, and conservation of energy for growth from the respiration of Fe(III)-oxyhydroxide coupled to the oxidation of acetate (Lovley et al., 2004).

Uranium contamination in subsurface environments is a widespread problem that threatens drinking water resources across the globe and especially in areas within the USA Department of Energy Environmental Remediation Sciences Programs ORFRC located at the Y-12 complex Department of Defense on the Oak Ridge Reservation, Oak Ridge, Tennessee. Sediment cores were sampled on 16 February 2001 with an Acker Drill Co. (TBD-II) Holegator track drill equipped with polyurethane sleeves lining the corer. After sampling, cores (3.75 cm in diameter, 182 cm in length) were transferred immediately to a Coy anaerobic chamber and subsampled using strictly anoxic and aseptic techniques. Samples were sealed under argon and transported overnight to Florida State University on blue ice packs.

For enrichment, a bicarbonate-buffered freshwater minimal medium (Widdel & Bak, 1992) was prepared in a Widdel flask and dispensed into Hungate tubes using anoxic and aseptic techniques. Before dispensing, the medium was saturated with N₂/CO₂ (80 : 20 mix) and the headspace of the tubes was maintained using the same gas mixture to obtain the desired pH (6.9). Amorphous Fe(III)-oxyhydroxide was prepared as described by Lovley & Phillips (1986) and used as an electron acceptor at a final concentration of 50 mM. FeCl₂ was used as a mild reductant whereas acetate was used as a carbon source at a final concentration of 10 mM. Enrichments were inoculated with 10% sediment (w/v) and incubated in the dark at 30 °C for 10 months. Active Fe(III) reduction was monitored by using visual screening and by a colorimetric assay for ferrous iron (Petrie et al., 2003). Tubes that developed a black colour due to the reduction that Geobacter species are well adapted for the extremes of subsurface sediments exposed to mixed waste contamination and thus the objective of our isolation effort was to isolate an Fe(III)-reducing micro-organism that was capable of both uranium(VI) reduction and the degradation of aromatic hydrocarbons. Strain FRC-32ᵀ was isolated from stable enrichment cultures initiated from highly contaminated subsurface sediment exposed to mixed heavy metal and hydrocarbon wastes using Fe(III)-oxyhydroxide as the electron acceptor and acetate as an electron donor (Petrie et al., 2003). Using structural and functional gene analysis, strain FRC-32ᵀ was detected in abundance in uranium-contaminated subsurface sediments (Akob et al., 2008) and is thought to be an important metal-reducing organism in the subsurface of contaminated DOE sites undergoing remediation. Here we show that strain FRC-32ᵀ has a wide range of metabolic capabilities consistent with such an environment, and the capacity for this organism to oxidize aromatic hydrocarbons is both an indication of the environmental significance and the novelty of this organism, as close relatives are not known to have these capabilities. Because of its origin and data relating it to ongoing remediation efforts at the Oak Ridge Field Research Center (ORFRC), strain FRC-32ᵀ could be an ideal model organism for the development of bioremediation technologies for contaminants at DOE sites.
of Fe(III) were selected for further isolation work. Isolation and purification of strains was performed using gellan gum (Gelrite; Sigma) shakes and serial dilutions of the enrichment. Pink-coloured colonies formed in the Gelrite dilution series, presumably as a result of high levels of c-type cytochromes present in the constituent organisms (Nevin et al., 2007). Individual pink colonies were picked with a sterile pasture pipette, repurified by using serial dilution in Gelrite and screened for Fe(III) reduction in a liquid medium, as described above. A pure culture of an Fe(III)-reducing bacterium was obtained from this study and designated strain FRC-32T. The purity of the culture was checked by using microscopy and by streaking onto agar plates containing acetate and fumarate as electron donor and acceptor, respectively. Stocks of this strain were stored in glycerol at −80 °C, and working cultures were maintained at 4 °C.

Genomic DNA from harvested cells was extracted using a Mo Bio UltraClean Microbial DNA isolation kit (Mo Bio laboratories), according to the manufacturer’s instructions. For 16S rRNA gene sequences, extracted DNAs were amplified by PCR using the 27F and 1492R universal bacterial primers, as described by Lane (1991). The amplified PCR product was purified using a GenCatch PCR Cleanup kit (Epoch Biolabs) and sequencing was performed using the DNA sequencing facility of Florida State University. The raw sequence data were screened and low quality data were removed. Three sequencing reactions were conducted to generate a near-full-length 16S rRNA gene sequence. The reactions were trimmed and assembled using the software package SEQUENCER (Gene Codes Corporation). An almost-complete 16S rRNA gene sequence (1424 bases) was obtained for strain FRC-32T and submitted to GenBank. A database search using the basic local alignment sequence tool (BLAST) at the National Center for Biotechnology Information (NCBI) was performed (Altschul et al., 1997), and the 16S rRNA gene sequence that appeared to be most similar to that of strain FRC-32T was that recovered from Geobacter uraniireducens Rf4T. For phylogenetic analyses, 16S rRNA gene sequences of the type species were retrieved from the NCBI database, and were aligned with that of Pelobacter acidigallici Ma Ga 2T, an outgroup member of the order Desulfuromonadales. Selected sequences were aligned using the software package ‘Greengenes’ (DeSantis et al., 2006). Aligned sequences were imported into the MEGA 4.0 software package (Tamura et al., 2007) and neighbour-joining phylogenetic trees were constructed using the maximum composite likelihood substitution model with pairwise deletion of gapped positions. The robustness of inferred tree topologies was evaluated by 1000 bootstrap resamplings of the data. In addition, Bayesian analyses were performed on the sequence data (MrBayes v. 3.1; Ronquist & Huelsenbeck, 2003) by running four simultaneous chains (three heated, one cold) for ten million generations, sampling every 1000 generations. The model selected was the general time reversible (GTR) using empirical base frequencies, and estimating the shape of the gamma distribution and proportion of invariant sites from the data. A resulting 50% majority-rule consensus tree (after discarding the burn-in of 25% of the generations) was determined to calculate the posterior probabilities for each node. The split differential between the two runs was below 0.01 after the completion of the run. Evaluation of the tree topology indicated that strain FRC-32T formed a monophyletic clade with G. uraniireducens Rf4T and the isolate Geobacter sp. TMJ1, and clustered with Geobacter bemidiensis Bem1, ‘Geobacter humireducens’ JW3 and Geobacter sp. M21, consistent with the subsurface Geobacter clade 1 defined by Holmes et al. (2007) (Fig. 1). The highest 16S rRNA gene sequence similarity was observed with G. uraniireducens Rf4T (98.1% similarity), whereas similarities in the range 92–96% were observed for the other recognized species of the genus Geobacter.

The level of 16S rRNA gene sequence similarity between G. uraniireducens Rf4T and strain FRC-32T (98.1%) was above the threshold generally employed for the delineation of novel species (i.e. 97% similarity or below; Claridge, 2004; Stackebrandt & Goebel, 1994; Vandamme et al., 1996). However, such thresholds are by no means definitive and we note that the previously described, physiologically distinct species Geobacter metallireducens GS-15T, Geobacter grbicai TACP-2T and Geobacter hydrogenophilus H-2T all share greater than 99% sequence similarity. Thus, 16S rRNA gene sequence similarity thresholds have limited use as phylogenetic markers for the delineation of Geobacter species (Coates et al., 2001). To demonstrate that G. uraniireducens Rf4T and strain FRC-32T represent distinct species, we performed a series of additional genetic analyses, including DNA–DNA hybridization, in silico genome–genome comparison and phylogenetic analysis of the β-subunit of the DNA-direct RNA polymerase gene (rpoB).

For DNA–DNA hybridization analysis, genomic DNA was isolated from 3 g G. uraniireducens Rf4T and strain FRC-32T cells using a French pressure cell (Thermo Spectronic) and was purified by using chromatography on hydroxyapatite as described by Cashon et al. (1977). DNA–DNA hybridization was performed by the Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ) as described by De Ley et al. (1970) under consideration of the modifications described by Huß et al. (1983), using a model Cary 100 Bio UV-VIS-spectrophotometer equipped with a Peltier-thermostatted 6 x 6 multicell changer and a temperature controller with in situ temperature probe (Varian). The DNA–DNA relatedness of strain FRC-32T with G. uraniireducens Rf4T was determined to be 21%. The recommended DNA–DNA hybridization threshold for delineating bacterial species is 70%, and thus strain FRC-32T is considered to represent a novel species according to the criterion of the Ad hoc Committee for the re-evaluation of the species definition in bacteriology (Wayne et al., 1987).
In addition to DNA–DNA hybridization analysis, the complete genome sequences of strain FRC-32T and \textit{G. uraniireducens} Rf4T were compared directly according to the methodology described by Goris \textit{et al.} (2007). The genome of strain FRC-32T was cut \textit{in silico} into 1000 base fragments, and these fragments were compared by using \textsc{blast} analysis with the intact genome of \textit{G. uraniireducens} Rf4T. This analysis generated two values: (i) average nucleotide identity (ANI; mean identity of regions of similarity identified by \textsc{blast} searches); and (ii) conserved DNA percentage (percent of strain FRC-32T genome that shares >90\% nucleotide identity to \textit{G. uraniireducens} Rf4T). This \textit{in silico} comparison revealed highly dissimilar genomes with an ANI value of 73.84\% and a conserved DNA percentage of 0.27\%. According to the regression analysis conducted by Goris \textit{et al.} (2007) these genome similarities correlated with DNA–DNA hybridization values of below 20\%.

Analysis of \textit{rpoB} gene sequences, coding for the β-subunit of the DNA-direct RNA polymerase, has been suggested as a supplementary tool for determining novel species designation (Adékambi \textit{et al.}, 2008). Complete gene sequences of \textit{rpoB} were acquired from the genome sequences of eight dissimilatory Fe(III)-reducing taxa, six different \textit{Geobacter} species and two outgroup \textit{Shewanella} species (USA Department of Energy Joint Genome Institute; http://www.jgi.doe.gov/). These gene sequences were aligned using the online software package \textsc{clustalw} \textsc{2} (Thompson \textit{et al.}, 1994; www.ebi.ac.uk/clustalw/). Phylogenetic and molecular evolutionary analyses were conducted on the aligned sequence data using \textsc{mega} version 4 (Tamura \textit{et al.}, 2007). A bootstrapped (1000 iterations) neighbour-joining tree was generated using 4022 informational DNA sequence positions. Complete deletion of gaps and missing data were implemented, along with a maximum composite likelihood nucleotide substitution model. The \textit{rpoB} gene of strain FRC-32T was most similar to that of \textit{G. uraniireducens} strain Rf4T, with a similarity of 81.1\% across the entire gene (Supplementary Fig. S1, available in IJSEM Online). This level of similarity was substantially below the 97.7\% threshold suggested by Adékambi \textit{et al.} (2008) and was well below the level of similarity between \textit{G. metallireducens} GS-15T, \textit{G. grbicium} TACP-2T and \textit{G. hydrogenophilus} H-2T (95\% similarity, across approximately 500 bp of sequence information; Holmes \textit{et al.}, 2004). These data are consistent with the conclusion that strain FRC-32T represents a novel species of genus \textit{Geobacter}.

Phenotypic characteristics were determined according to previously described methods under comparable laboratory conditions (Lovley \textit{et al.}, 1993; Coates \textit{et al.}, 2001; Straub & Buchholz-Cleven, 2001; Shelobolina \textit{et al.}, 2007, 2008). Out of 13 recognized species of the genus \textit{Geobacter} at the time of writing, five species were selected for phenotypic comparison. These species showed highest similarity with strain FRC-32T of the 13 \textit{Geobacter} species based on 16S rRNA gene sequence similarity, and also clustered together to form the subsurface clade of the genus \textit{Geobacter}. Unless otherwise stated, an anaerobic bicarbonate-buffered freshwater medium sparged with a N\textsubscript{2}/CO\textsubscript{2} gas mixture (80:20, v/v) and pre-reduced with 2.0 mM cysteine hydrochloride was used for all growth and physiological tests. In order to test the optimum temperature for growth of strain FRC-32T, the bacterium was inoculated in freshwater medium with 10 mM acetate and

\textbf{Fig. 1.} Neighbour-joining phylogenetic tree based on 16S rRNA gene sequences of members of the \textit{Geobacteraceae} in the \textit{Deltaproteobacteria}, including strain FRC-32T isolated from the subsurface of the ORFRC (indicated by bold type). Nodes supported by bootstrap values greater than 70\% are indicated by numeric values. Nodes supported by Bayesian analysis with posterior probability values greater than 70\% (open circles) or 95\% (filled circles) are indicated. Bar, 0.01 substitutions per nucleotide position.
10 mM fumarate as electron donor and acceptor respectively, and incubated in a series of temperatures (10, 20, 30, 35 and 40 °C). Growth at each temperature was monitored by using optical density (OD) measurements at a wavelength of 600 nm. Growth in a range of pH values was performed using the same medium, but with acetate and fumarate, and supplemented with organic buffers (homopipes, pH 4–5; MES, pH 5.5–6.5; and HEPES, pH 6.8–8.2). Likewise, growth with NaCl was examined by inoculating strain FRC-32T into tubes with freshwater medium with acetate and fumarate, and a series of NaCl concentrations of 0–1.0 % at intervals of 0.1 %. All growth experiments were conducted in triplicate and the tubes were inoculated and incubated at optimum temperature, and growth was monitored by using OD at 600 nm.

For the morphological analysis, strain FRC-32T was grown as described above and fixed for scanning electron microscopy (SEM) using 2 % glutaraldehyde. Fixed samples were filtered through a 0.45 μm filter, dehydrated through an ethanol series (25, 50, 75, 2 × 100 %, v/v) and then critically point dried using an Autosamdi-815 critical point drier (Tousimis). Dried samples were mounted on aluminium stubs, platinum coated and imaged at 5 kv on a Leo-1540XB Field Emission Gun-SEM. SEM revealed that strain FRC-32T is a curved rod-shaped bacterium, morphologically similar to other members of the genus Geobacter (Supplementary Fig. S2, in IJSEM Online).

A comparison of phenotypic characteristics between strain FRC-32T and closely affiliated Geobacter species is given in Table 1. Strain FRC-32T conserved energy for growth by coupling the respiration of Fe(III)-oxyhydroxide to the oxidation of acetate, as indicated by the production of Fe(II+) concurrent with cell growth (Supplementary Fig. S3, in IJSEM Online). Respiration of solid phase iron is a characteristic feature of members of the Geobacteraceae. In contrast to its closest relative (G. uraniireducens Rf4T), strain FRC-32T grew with ferric citrate and elemental sulfur as electron acceptors. Similarly, strain FRC-32T could use formate, butyrate and butanol as electron donors whereas G. uraniireducens Rf4T does not (Table 1). To test the uranium-reducing activity of strain FRC-32T, a resting cell suspension study was performed according to previous methods (Lovley et al., 1991; Gorby & Lovley, 1992; Shelobolina et al., 2007). The U(VI)-reducing activity of strain FRC-32T was shown to be comparable to that of Geobacter sulfurreducens PCA T and G. uraniireducens Rf4T (Shelobolina et al., 2007, 2008). Little to no uranium reduction was observed in uninoculated controls or in control cultures to which fumarate was added as a competing electron acceptor.

The complete genome of strain FRC-32T was 4 304 501 basepairs in length and is approximately 0.8 Mb shorter than that of G. uraniireducens strain Rf4T. Preliminary screening of the genome sequence revealed that strain FRC-32T contained the genes for aromatic hydrocarbon degradation. To our knowledge, G. metallireducens GS-15T is the only cultivated Geobacter strain that has been demonstrated to utilize aromatic compounds (benzoate, toluene) as an electron donor (Lovley, 2006). Thus, we initiated preliminary physiological testing of strain FRC-32T on monoaromatic hydrocarbon compounds. Active cultures of strain FRC-32T grown on acetate were transferred into a medium containing 5 mM benzoate or 1 mM toluene as the electron donor and 10 mM fumarate as the electron acceptor. After prolonged incubation only cultures showing clear turbidity were further transferred into the medium containing different substrates over five passages. With fumarate as the electron acceptor, strain FRC-32T grew in successive transfers with both benzoate and toluene as the electron donor. Monoaromatic hydrocarbons are among the most common water-soluble groundwater contaminants of subsurface aquifers used for drinking water resources in the USA and in other industrialized countries (Rooney-Varga et al., 1999; Lovley & Anderson, 2000). Strain FRC-32T is the first organism from the subsurface clade of genus Geobacter (Holmes et al., 2007) that has been shown to be capable of growth on aromatic hydrocarbons and provides an ideal model organism for further study of this important process.

The DNA G+C content of strain FRC-32T was 53 mol%, determined by using genome sequence analysis. Strain
FRC-32T showed optimal growth at 30 °C, with no growth below 10 °C or above 40 °C. Strain FRC-32T grew at pH 6–8, with optimum growth at pH 6.7–7.3. NaCl was observed to be inhibitory for growth, although strain FRC-32T tolerated up to 0.7 % (w/v) NaCl.

The physiological capabilities of strain FRC-32T, particularly the capacity to utilize a distinct range of electron acceptors and donors, were the most significant characteristics that differentiate the novel strain from the most closely related members of the genus Geobacter (Table 1). In addition, complete genome–genome comparison of strain FRC-32T and G. uranireducens strain Rf4T was definitive in differentiating the two organisms. In addition to a significant divergence in total genome size, the organisms shared few genes other than the rRNA genes that have greater than 90 % sequence similarity. Similarly, DNA regions shared by the two organisms had a low mean nucleotide similarity consistent with the DNA–DNA hybridization value of 21 %. The phylogenetic reconstruction of the rpoB gene of strain FRC-32T with closely related, recognized species was consistent with the isolation of a novel species of Geobacter. These data suggest that DNA–DNA hybridization data are redundant for species delineation when molecular data other than rRNA gene sequences indicate low genome similarity. With the drastically reduced effort now required for genome sequencing, it is clear that genome sequence data will be more readily accessible than DNA–DNA hybridization comparisons.

In combination, the genetic analyses revealed the robustness of direct sequence-based comparison for the characterization of novel species. Furthermore, although the genetic analyses demonstrate that strain FRC-32T represents a novel species and, on a genome-scale significantly divergent from the closest recognized species, phenotypic analyses indicate that strain FRC-32T shares many common features with other members of the genus Geobacter. Thus, phenotypic as well as genotypic results of the current study indicate that strain FRC-32T can be sufficiently delineated from its closest relative G. uranireducens Rf4T and thus a novel species of genus Geobacter is proposed with the name Geobacter daltonii sp. nov.

Description of Geobacter daltonii sp. nov.

Geobacter daltonii (dal.to’ni.i. N.L. masc. gen. n. daltonii of Dalton, named after Dava Dalton who performed the initial isolation of the strain and passed away shortly thereafter).

Cells are Gram-negative, non-spore-forming, slightly curved rods, 1.0–1.5 μm long and 0.3–0.5 μm in diameter, and form pink colonies when growing on acetate and fumarate. Growth with Fe(III)-oxyhydroxide as electron acceptor is observed with acetate as electron donor and carbon substrate. Has 21 % DNA–DNA relatedness with G. uranireducens Rf4T. Growth occurs at 20–35 °C, with optimal growth at 30 °C. Growth occurs at pH 6.0–8.0, with optimum growth at pH 6.7–7.3. Optimum growth occurs in the absence of NaCl, but can tolerate up to 0.7 % NaCl. Ferric citrate, elemental sulfur, malate and fumarate are used as electron acceptors; nitrate is not reduced. Formate, butanol and butyrate, benzoate and toluene are utilized as electron donors with fumarate as an electron acceptor; lactate, hydrogen, propionate and succinate are not used as electron donors. The DNA G+C content of the type strain is 53 mol%.

The type strain, FRC-32T (=DSM 22448T=JCM 15807T), was isolated from a shallow subsurface of the ORFRC, Oak Ridge, Tennessee, where the sediments are exposed to mixed waste contamination including high levels of uranium(VI) and aromatic hydrocarbons.

Acknowledgements

This research was funded by Environmental Remediation Sciences Program (ERSP), Office of Biological and Environmental Research (OBER), US Department of Energy (grants DE-FG02-00ER62986 and DE-FG02-07ER64373 to J. E. K.). The genome sequence data were produced by the US Department of Energy Joint Genome Institute (http://www.jgi.doe.gov/). We acknowledge David Watson for sediment sampling and collaboration as well as Mike Dolphöpf, Sean O’Brien, and Fabiana Dittori for their technical assistance. We kindly thank Kostas Konstantinidis for his assistance in conducting in silico genome comparisons. This work is dedicated to the memory of Dava Dalton, friend and colleague, who performed the initial isolation and passed away shortly thereafter.

References

