Amycolatopsis tucumanensis sp. nov., a copper-resistant actinobacterium isolated from polluted sediments

Virginia Helena Albarracín,1,2 Pablo Alonso-Vega,3 Martha E. Trujillo,3 María Julia Amoroso,1,4 and Carlos Mauricio Abate1,2,4

Correspondence
Carlos Mauricio Abate
cabate@proimi.org.ar

1Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pasaje Caseros, 4000 Tucumán, Argentina
2Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, 4000 Tucumán, Argentina
3Departamento de Microbiología y Genética, EdificioDepartamental, Lab. 205, Campus Miguel de Unamuno, Universidad de Salamanca, Salamanca, Spain
4Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, 4000 Tucumán, Argentina

A novel actinomycete strain, ABO7, isolated from copper-polluted sediments showed remarkable copper resistance as well as high bioaccumulation abilities. Classical taxonomic methods, including chemotaxonomy and molecular techniques, were used to characterize the isolate. Strain ABO7 developed a honey-yellow substrate mycelium on all ISP media tested. Abundant, white, aerial mycelium was only formed on ISP 2, 5 and 7 and MM agar. Both types of hyphae fragmented into squarish rod-shaped elements. The aerial mycelium displayed spore-like structures with smooth surfaces in long, straight to flexuous chains. The organism has a type-IV cell wall lacking mycolic acids and type-A whole-cell sugar pattern (meso-diaminopimelic acid, arabinose and galactose) in addition to a phospholipid type-II profile. 16S rRNA gene sequence studies indicated that this organism is a member of the family Pseudonocardiaceae and that it forms a monophyletic clade with Amycolatopsis eurytherma NT202T. The DNA–DNA relatedness of strain ABO7 to A. eurytherma DSM 44348T was 39.5%. It is evident from these genotypic and phenotypic data that strain ABO7 represents a novel species in the genus Amycolatopsis, for which the name proposed is Amycolatopsis tucumanensis sp. nov. The type strain is ABO7 (=DSM 45259T =LMG 24814T).

Copper is an essential heavy metal required for numerous enzymic functions in all cells. However, the same chemistry that makes copper essential also makes it a potent cytotoxin when copper homeostatic controls fail (Solioz & Stoyanov, 2003). Copper’s many uses in several industrial applications has led to its wide distribution in soil, silt, waste and wastewater and to significant environmental problems that need to be addressed (Albarracín et al., 2008b). Micro-organisms that are able to accumulate and immobilize toxic metals are considered key tools for the bioremediation of polluted environments (Politi et al., 2007; Albarracín et al., 2008a). Because of their great metabolic and morphological diversity, actinobacteria have been proposed as potential tools for remediation biotechnologies (Politi et al., 2007; Schmidt et al., 2005). However, copper resistance in actinobacteria has been little studied (Amoroso et al., 1998; Richards et al., 2002; Schmidt et al., 2005; Albarracín et al., 2005, 2008a, b).

The genus Amycolatopsis, proposed by Lechevalier et al. (1986), has been classified in the family Pseudonocardiaceae by the application of the polyphasic taxonomic approach to actinomycete systematics (Stackebrandt et al., 1997; Kim & Goodfellow, 1999). It currently contains 39 species with validly published names (http://www.bacterio.cict.fr/a/amycolatopsis.html), and their representatives have been thoroughly studied because of their important secondary metabolism and applications in medicine and industry (Wink et al., 2004). Recently, Albarracín et al. (2008a) made a report of a copper-resistant Amycolatopsis strain.
isolated from copper-polluted sediments and designated ABOT, which has a high bioaccumulation ability and the potential for use in bioremediation biotechnologies.

The actinobacterial strain ABOT (code of the culture collection at PROIMI, Tucumán, Argentina) was isolated from groundwater sediments polluted with copper (Albarracín et al., 2005). It was stored at 4 °C on starch-casein agar slants, containing (l−1): 10.0 g starch, 1.0 g casein, 0.5 g K2HPO4, 15 g agar; pH 7.0. The reference strain Amycolatopsis eurytherma DSM 44348T was included in morphological and physiological studies for comparison.

Morphological and physiological characteristics were observed on various media as described by Shirling & Gottlieb (1966): yeast extract-malt extract agar (ISP 2), inorganic salts-starch agar (ISP 4), glycerol-asparagine agar (ISP 5), peptone-yeast extract-iron agar (ISP 6) and tyrosine agar (ISP 7). Cultures were incubated for 10 days at 30 °C. Honey-yellow-coloured substrate mycelium developed on all ISP media tested (RAL colour code 1024; Deutsches Institut für Gütesicherung und Kennzeichnung, Reichsausschuss für Lieferbedingungen). White, spore-producing aerial mycelium (RAL colour code 9003) was only formed on ISP 2, 5 and 7 and minimal medium (MM) agar, containing (l−1): 0.5 g L-asparagine, 0.5 g K2HPO4, 0.2 g MgSO4.7H2O, 0.01 g FeSO4.7H2O, 10.0 g glucose, 15.0 g agar; pH 7.0. Gram and acid–alcohol-fast stains were carried out on a 3-day-old culture as described by Doetsch (1981). The cells stained Gram-positive and were non-acid–alcohol-fast.

For scanning electron microscopy, cultures were grown on ISP 2 agar. Agar blocks were cut from the growth medium, fixed in 4.25% glutaraldehyde in 0.1 M phosphate buffer (pH 7.4) for 3 h at 4 °C and dehydrated in a graded acetone series. The critical drying point was obtained by exchanging the acetone through liquid CO2. The samples were coated with gold and visualized in a JEOL JSM 35CF electron microscope with 15 kV voltage acceleration. After 7–10 days on ISP 2, strain ABOT produced a well-developed branched substrate mycelium as well as a profuse aerial mycelium (Fig. 1). Both types of hyphae fragmented into squarish rod-shaped elements. The aerial mycelium displayed spore-like structures (0.3 × 0.8–1.5 µm) with smooth surfaces in long, straight to flexuous chains (Fig. 1). All of these properties are consistent with the classification of the strain in the genus Amycolatopsis. For a comparison, a micrograph of the reference strain A. eurytherma DSM 44348T is presented in Supplementary Fig. S1 (available in IJSEM Online).

Utilization of carbohydrates was investigated in ISP 9 (Shirling & Gottlieb, 1966) by using a 12-well microtitre plate technique. Lysozyme resistance and sodium chloride tolerance were tested on six-well microtitre plates (Wink et al., 2004). Acid production from sugars was determined according to Gordon et al. (1974). A fingerprint of enzymic activities was obtained by using API 20E, API ZYM and API Coryne test strips (bioMérieux). The temperature for growth was tested at 10, 15, 20, 25, 30, 35, 45 and 55 °C on ISP 2 while the pH for growth was tested in the range pH 2.0–10.0 in ISP 2 broth (30 °C, 180 r.p.m.). Strain ABOT was able to utilize all of the tested carbon sources except xylose, rhamnose and cellulose (Table 1) and could grow in the presence of 5% NaCl and up to 100 µg lysozyme ml−1. The strain showed a wide tolerance to temperature and pH, in the ranges 15–55 °C and pH 5.0–10.0.

Copper resistance was measured by incubating cultures at 30 °C for 4 days on MM agar with CuSO4 added to different concentrations (0.5–3 mM), as described previously (Albarracín et al., 2005). For this assay, an additional copper-sensitive control, Streptomyces coelicolor DSM 40783T, was used. Fig. 2 illustrates the growth of the three strains. While strain ABOT was able to grow up to the maximum concentration tested, S. coelicolor DSM 40783T was notably inhibited at 0.5 mM, with which sparse substrate mycelium was formed. A. eurytherma DSM 44348T presented a moderate copper-resistance profile but it is clearly lower than that depicted by strain ABOT. Strain ABOT could be distinguished from its closest phylogenetic relatives on the basis of its copper-resistance profile, broader pH and temperature ranges for growth and differential carbohydrate assimilation and enzymic activity profiles (Table 1).

For chemotaxonomic analyses, strain ABOT was grown in tryptcase soy broth in flasks on a rotary shaker at 90 r.p.m. and 28 °C and the biomass was harvested, washed in distilled water and freeze-dried. Cell walls were prepared according to the method of Schleifer (1985). The peptidoglycan structure was studied in whole- and partial-cell-wall hydrolysates using TLC on cellulose (Schleifer & Kandler, 1972). Analysis of sugars in the purified cell walls was carried out as described by Staneck & Roberts (1974). Menaquinones were extracted and purified by the method of Minnikin et al. (1984) and analysed by HPLC (Hewlett Packard 1100). Methyl esters of cellular fatty acids from strain ABOT were prepared from cells of cultures grown for 24 h on tryptcase soy agar at 28 °C and
were analysed by GLC (Schröder et al., 1997). Polar lipids were extracted and identified by two-dimensional TLC (Minnikin et al., 1984). Chemotaxonomic data also supported the assignment of strain ABO\(^T\) to the genus Amycolatopsis. The micro-organism has a type-IV cell wall (meso-diaminopimelic acid) and a type-A whole-cell sugar pattern, with arabinose, galactose and ribose as the major constituents. The detected phospholipids included phosphatidylglycerol, phosphatidylethanolamine, phosphatidyglycerol and diphosphatidylethanolamine, which corresponds to a phospholipid type-II profile. The major menaquinone present was MK-9(H\(_4\)), MK-9(H\(_2\)), MK-9(H\(_6\)) and MK-10(H\(_2\)) were found in minor amounts. Strain ABO\(^T\) contained major amounts of 14-methyl pentadecanoic acid (23 %), hexadecanoic acid (12 %) and 14-methyl hexadecanoic acid (11.4 %). In accordance with its non-acid–alcohol-fastness, mycolic acids were absent in this strain. The complete fatty acid profile is shown in Supplementary Table S1.

DNA extraction and PCR cloning and sequencing of the 16S rRNA gene were carried out as described previously (Albarracín et al., 2005). Multiple alignments of the 16S rRNA gene sequences from strain ABO\(^T\) (1488 nt) and reference sequences from the NCBI databases were performed by using the CLUSTAL W program (Thompson et al., 1994). A phylogenetic tree was constructed according to the neighbour-joining method (Saitou & Nei, 1987) using the maximum-composite-likelihood method (Tamura et al., 2004) and compared with a tree constructed according to the maximum-parsimony method (Fitch, 1971). In both cases, 1000 resamplings were used for bootstrap analyses (Felsenstein, 1985). All analyses were carried out with the MEGA4 program (Kumar et al., 2001). The phylogenetic analysis with corresponding nucleotide sequences from representatives of the family Pseudonocardiaeae showed that the organism belongs to the genus Amycolatopsis (Fig. 3 and Supplementary Fig. S2). It is clear from the phylogenetic trees that strain ABO\(^T\) forms a monophyletic clade with A. eurytherma NT202\(^T\). This relationship is supported by the 100 % bootstrap value for the node in the neighbour-joining tree. The 16S rRNA gene sequence similarity between strain ABO\(^T\) and A. eurytherma NT202\(^T\) is 99.8 %; this value corresponds to two differences in the 1466 nucleotide positions that were

Table 1. Characteristics of strain ABO\(^T\) and its closest phylogenetic relatives in the genus Amycolatopsis

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production of soluble pigment</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>Acid production from:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(+)-D-Fructose</td>
<td>w</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>myo-Inositol</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>(+)-Raffinose</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>(+)-L-Rhamnose</td>
<td>w</td>
<td>+</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>(-)-Sucrose</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>(+)-Trehalose</td>
<td>w</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>(+)-D-Xylose</td>
<td>w</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Utilization of:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(+)-Cellobiose</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>(+)-Raffinose</td>
<td>+</td>
<td>ND</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>(+)-L-Rhamnose</td>
<td>–</td>
<td>+</td>
<td>ND</td>
<td>+</td>
</tr>
<tr>
<td>(+)-D-Xylose</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Growth at:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 °C</td>
<td>w</td>
<td>W</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>20 °C</td>
<td>+</td>
<td>W</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>25 °C</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>55 °C</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>Degradation of:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aesculin</td>
<td>+</td>
<td>–</td>
<td>W</td>
<td>+</td>
</tr>
<tr>
<td>Casein</td>
<td>+</td>
<td>+</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Gelatin</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Production of:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β-Galactosidase</td>
<td>+</td>
<td>–</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>N-Acetyl-β-glucosaminidase</td>
<td>+</td>
<td>–</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Nitrate reductase</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Urease</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>+</td>
</tr>
</tbody>
</table>

[Fig. 2. Copper-resistance assays for S. coelicolor DSM 40783\(^T\) (■), A. eurytherma DSM 44348\(^T\) (●) and strain ABO\(^T\) (○) on MM agar plates supplemented with 0.5 or 1 mM copper sulphate (a) and A. eurytherma DSM 44348\(^T\) (●) and strain ABO\(^T\) (○) inoculated on MM agar plates with a copper sulphate gradient (0–3 mM; arrow indicates the direction of increasing copper concentration) (b).]
Amycolatopsis compared. Similarity values with other Amycolatopsis strains ranged from 93 to 99.8%.

DNA for DNA–DNA hybridization was isolated using a French pressure cell and purified by chromatography on hydroxyapatite as described by Cashion et al. (1977). DNA–DNA hybridization was carried out as described by De Ley et al. (1970) with some modifications (Huß et al., 1983) using a model Cary 100 Bio UV/Vis spectrophotometer. The DNA–DNA relatedness of strain ABO T to A. eurytherma DSM 44348 T was 39.5 %, indicating that they were distinct genomospecies based on the criteria set by Stackebrandt et al. (2002).

In summary, strain ABO T could be distinguished from its closest phylogenetic neighbours, including A. eurytherma, by combined results from phenotypic and molecular tests (Figs 1, 2 and 3 and Table 1). It is evident from these genotypic and phenotypic data that strain ABO T represents a novel species in the genus Amycolatopsis. It is proposed that the organism be assigned to the novel species Amycolatopsis tucumanensis sp. nov.

Description of Amycolatopsis tucumanensis sp. nov.

Amycolatopsis tucumanensis (tu.cu.ma.nen’sis. N.L. fem. adj. tucumanensis pertaining to Tucumán, Argentina, the origin of the soil sample from which the type strain was isolated).

Aerobic, Gram-positive, non-acid–alcohol-fast, catalase-positive, non-motile actinomycete that forms an extensively branched, honey-yellow substrate mycelium which fragments into squarish elements on all ISP media tested (RAL colour code 1024). White, spore-producing aerial mycelium (RAL colour code 9003) is only formed on ISP 2, 5 and 7 and MM agar and also fragments. The spore-like structures (0.3 × 0.8–1.5 μm) present smooth surfaces and are displayed in long, straight to flexuous chains. No diffusible pigments are produced with any tested media. Produces phosphatase, but not nitrate reductase nor urease. Grows at 15–55 °C and pH 5–10 and with 5 % NaCl. Resistant to lysozyme (100 μg ml⁻¹) and to high concentrations of copper (up to 3 mM). Other phenotypic properties are given in Table 1.

The type strain is ABO T (= DSM 45259 T = BCCM/LMG 24814 T), which was isolated from a sediment sample polluted with copper and collected in Tucumán, Argentina. The species description is based on a single strain and hence serves as the type strain description.

Acknowledgements

This work was supported by CIUNT, FonCyT and CONICET, Argentina. V. H. A. was a CONICET Doctoral Fellow. The authors gratefully acknowledge the assistance of Mr Guillermo Borchia (laboratory assistant) and Lic. Ana Lucía Avila. Chemotaxonomic and DNA–DNA hybridization analyses were carried out by the DSMZ staff.

References

