Brevibacterium pityocampae sp. nov., isolated from caterpillars of Thaumetopoea pityocampa (Lepidoptera, Thaumetopoeidae)

Hatice Katı, 1 İkbal Agah İnce, 1,2+ İsmail Demir2 and Zihni Demirbağ2

1Giresun University, Faculty of Arts and Sciences, Department of Biology, 28049 Giresun, Turkey
2Karadeniz Technical University, Faculty of Arts and Sciences, Department of Biology, 61080 Trabzon, Turkey

This work deals with the taxonomic study of a bacterium, strain Tp12T, isolated from caterpillars of the pine processionary moth (Thaumetopoea pityocampa Denis & Schiffermüller, 1775; Lepidoptera, Thaumetopoeidae). The isolate was assigned to the genus Brevibacterium on the basis of a polyphasic taxonomic study, including morphological and biochemical characteristics, 16S rRNA gene sequence analysis, fatty acid analysis and DNA G+C content. The highest 16S rRNA gene sequence similarity to this isolate was approximately 96%, with the type strains of Brevibacterium album and Brevibacterium samyangense. Cellular fatty acids of the isolate are of the branched type, with the major components being anteiso-C15:0 and anteiso-C17:0. The DNA G+C content was 69.8 mol%. Although the strain was related to B. album and B. samyangense according to 16S rRNA gene sequence analysis, it differed from any known species of Brevibacterium. Based on this evidence, the novel species Brevibacterium pityocampae sp. nov. is proposed, with strain Tp12T (=DSM 21720T =NCCB 100255T) as the type strain.

The genus Brevibacterium was proposed by Breed (1957). While several Gram-positive, non-spore-forming, non-branching rods were classified as members of the genus Brevibacterium, further chemotaxonomic studies showed that not all of these species are members of the genus. Subsequently, these species have been classified in different corineform genera (Collins, 1992) and the description of the genus was emended to include only those species that correspond to the type species, Brevibacterium linens (Collins et al., 1980). In addition to B. linens, 40 species with validly published names were assigned to the genus Brevibacterium at the time of writing (http://www.bacterio.ict.fr/b/brevibacterium.html).

Brevibacteria have been isolated from diverse habitats such as milk products (Kolloffel et al., 1999), clinical specimens (Wauters et al., 2001), human body parts (McBride et al., 1993; Wauters et al., 2003, 2004), soil (Tang et al., 2008), sediment (Gavrich et al., 2004; Lee, 2006; Bhadra et al., 2008), brown algae (Ivanova et al., 2004), paintings (Heyrman et al., 2004), poultry (Pascual & Collins, 1999) and marine environments (Lee, 2008). In the present study, strain Tp12T, a novel member of the genus Brevibacterium, was isolated from larvae of the pine processionary moth (Thaumetopoea pityocampa Denis & Schiffermüller, 1775; Lepidoptera, Thaumetopoeidae). While many bacterial strains have been isolated from insects (Demir et al., 2002; Sezen et al., 2004, 2005, 2007; Yılmaz et al., 2006; Bahar & Demirbağ, 2007), to our knowledge, the present report is the first time that a brevibacterium has been isolated from an insect.

T. pityocampa is one of the most harmful pests of pine species in Mediterranean countries including Turkey (İnce et al., 2007). T. pityocampa nests were collected from Scots pine (Pinus sylvestris L.) from the Middle Black Sea region of Turkey while screening the bacterial flora of the pest (İnce et al., 2008). Based on colony morphology and the colour of bacterial specimens removed from T. pityocampa larvae, 14 different isolates (Tp1–Tp14) were determined as members of the bacterial flora of the larvae (İnce et al., 2008). Taxonomic identification of these isolates was finalized by a polyphasic taxonomic approach. One of the isolates obtained, strain Tp12T, was clearly distinguished from the other isolates on the basis of some morphological, physiological and biochemical characteristics. Based on the current polyphasic study, strain Tp12T represents a novel species of the genus Brevibacterium.

After macroscopic examination, dead, diseased and healthy larvae were distinguished and were sterilized in 70%...
ethanol for 1.5–2 min to remove external contaminants and then washed twice with sterile distilled water (Lipa & Wiland, 1972; Poinar & Thomas, 1978; Osborn et al., 2002). Using standard aseptic techniques, the contents of surface-sterilized insect larvae were collected with a sterile injector and suspended in 5 ml PBS (pH 7.4). Serial dilutions of the suspension were spread on nutrient agar (Case & Johnson, 1992) and the plates were incubated at 30 °C for 48–72 h. At the end of the incubation period, discrete bacterial colonies were removed aseptically by using an inoculation loop, restreaked on nutrient agar and incubated aerobically for 24–48 h. According to the colour and morphology of the colonies, isolates were separated and pure cultures were prepared from colonies. The isolates were identified by morphological, physiological, biochemical and molecular methods according to Palleroni (1986) and Kandler & Weiss (1986). Finally, a selected colony of isolate Tp12T was purified by subculturing on plates and the bacterium was identified by various conventional and molecular tests.

Tryptic soy agar (TSA) was used for determination of phenotypic and physiological characteristics of strain Tp12T. Colony and cell morphology were determined by direct and stereomicroscopic observations of single colonies grown for 24, 48, 72 and 120 h. Gram staining was performed according to the procedure described by Claus (1992) and confirmed by the KOH string test (Murray et al., 1999). The KOH test result was compared with the positive control Pseudomonas aeruginosa ATCC 27853 and the negative control Staphylococcus aureus ATCC 25923. Cell motility was examined by the presence of turbidity throughout tubes of semi-solid medium (Leifson, 1960) and by light microscopy (Olympus model CX21).

Growth of strain Tp12T was tested at 25, 30, 40, 45 and 50 °C. The optimal growth temperature was 30 °C. Salt tolerance was tested by using the following NaCl concentrations (w/v): 0, 3, 5, 10, 15 and 18 %. The pH range for growth was investigated between pH 4.0 and 10.0 at intervals of 0.5 pH units. The results were monitored after 72 h incubation at 30 °C. Catalase activity was determined by the production of bubbles after the addition of 10 μl 3% (v/v) H₂O₂ onto single colonies. Oxidase activity was observed by oxidation of N,N,N’,N’-tetramethyl p-phenylenediamine with oxidase discs containing N,N-dimethyl p-phenylenediamine oxalate and α-naphthol (Fluka). A well-isolated colony was spread with an inoculating loop onto an oxidase disc. The reaction was observed within 2 min at 25–30 °C and compared with positive control P. aeruginosa ATCC 27853 and negative control Escherichia coli ATCC 25922.

Some physiological properties were tested by using API 20E strips (bioMérieux). Results were scored after 5 days at 30 °C. Differential phenotypic, biochemical and physiological properties of strain Tp12T and related Brevibacterium type strains are given in Table 1. To determine the major fatty acids, fatty acid methyl esters were extracted from strain Tp12T and analysed by gas chromatography (Hewlett Packard 5890 II plus) and the Sherlock Microbial Identification System using version 4.10 of the TSBA40 library (Microbial ID). These analyses were kindly performed by Fikrettin Şahin (Yeditepe University, Istanbul, Turkey).

Extraction of genomic DNA and PCR amplification of the 16S rRNA gene were done as described by Ince et al. (2008). DNA sequencing was performed at Macrogen Inc. (Seoul, Korea). A total of 1402 nt of the 16S rRNA gene sequence from strain Tp12T were determined. 16S rRNA gene sequence comparisons with entries in the updated GenBank and EMBL databases were performed with the FASTA and BLAST programs (Pearson, 1990; Altschul et al., 1990, 1997). Sequence alignments were performed with the program CLUSTAL W (EMBL European Bioinformatics Institute; http://www.ebi.ac.uk) and edited with the GeneDoc software (Nicholas et al., 1997).

Evolutionary relationships of closely related members of Brevibacterium were inferred using three tree-making algorithms: the neighbour-joining (Saitou & Nei, 1987), maximum-likelihood (Felsenstein, 1981) and maximum-parsimony (Fitch, 1971) methods. The relationships among taxa were coherent in all tree-making methods.

Table 1. Differential phenotypic characteristics of strain Tp12T and its close phylogenetic neighbours

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colony colour</td>
<td>Yellow</td>
<td>White</td>
<td>Yellow</td>
</tr>
<tr>
<td>Motility</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Growth at:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 °C</td>
<td>+</td>
<td>ND</td>
<td>+</td>
</tr>
<tr>
<td>30 °C</td>
<td>+</td>
<td>ND</td>
<td>+</td>
</tr>
<tr>
<td>45 °C</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>pH for growth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>6–10</td>
<td>6–8</td>
<td>6.1–10.1</td>
</tr>
<tr>
<td>Optimum</td>
<td>8</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>NaCl tolerance (%, w/v)</td>
<td>10</td>
<td>10</td>
<td>10*</td>
</tr>
<tr>
<td>Fermentation:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d-Glucose</td>
<td>–</td>
<td>–</td>
<td>W</td>
</tr>
<tr>
<td>Sucrose</td>
<td>–</td>
<td>–</td>
<td>W</td>
</tr>
<tr>
<td>Melibiose</td>
<td>–</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Utilization of citrate</td>
<td>–</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Nitrate reduction</td>
<td>+</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Gelatin hydrolysis</td>
<td>–</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>DNA G+C content (mol%)</td>
<td>69.8</td>
<td>70.7</td>
<td>70</td>
</tr>
<tr>
<td>Source of isolation</td>
<td>Insect</td>
<td>Saline soil</td>
<td>Beach sediment</td>
</tr>
</tbody>
</table>

*Weak growth at 15% (w/v) NaCl.
used. A phylogenetic tree was constructed using the neighbour-joining method (Fig. 1). The tree is drawn to scale, with branch lengths in the same units as those of the evolutionary distances used to infer the phylogenetic tree. Evolutionary distances were computed using the Jukes–Cantor method (Jukes & Cantor, 1969) and are in units of the number of base substitutions per site. The bootstrap consensus tree is taken to represent the evolutionary history of the taxa analysed (Felsenstein, 1985). Percentages of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 replicates) are shown next to the branches (Felsenstein, 1985). All positions containing gaps and missing data were eliminated from the dataset (complete deletion option). There were a total of 778 positions in the final dataset. Phylogenetic analyses were conducted in MEGA4 (Tamura et al., 2007).

The cellular fatty acids of strain Tp12^T were predominantly of the branched type, with anteiso-C_{15:0} and anteiso-C_{17:0} accounting for more than 90% of the total cellular fatty acids. Other fatty acids included iso-C_{15:0} (4.8%) and iso-C_{16:0} (2.8%). A comparison of the cellular fatty acid contents of strain Tp12^T, Brevibacterium album YIM 90718^T and Brevibacterium samyangense SST-8^T is shown in Supplementary Table S1, available in IJSEM Online.

According to the comparison of 16S rRNA gene sequences, the closest relatives of strain Tp12^T were B. album YIM 90718^T and B. samyangense SST-8^T, both showing 96% similarity. Levels of similarity between strain Tp12^T and the other recognized Brevibacterium species were lower than 96%. In light of previous studies performed by Stackebrandt & Goebel (1994) and Lee (2006), the 16S rRNA gene sequence comparisons indicate that the isolate can be assigned to a separate genospecies without the need for DNA–DNA hybridization experiments. Since the primary structure of the 16S rRNA gene is easier to determine than hybridization between DNA strands, the strength of the sequence analysis is to recognize the level at which DNA pairing studies need to be performed, which certainly applies to similarities of 97% and higher (Stackebrandt & Goebel, 1994). A tree depicting the phylogenetic position of strain Tp12^T within the genus Brevibacterium is shown in Fig. 1. Based on 16S rRNA gene sequence comparison, strain Tp12^T forms a distinct clade with B. samyangense SST-8^T.

Genomic DNA of strain Tp12^T was prepared for the determination of the G+C content. The DNA base composition of strain Tp12^T was determined by HPLC and calculated according to the method of Mesbah et al. (1989) by the Deutsche Sammlung von Mikroorganismen und Zellkulturen as 69.8 mol% G+C, which is high in comparison with most other brevibacteria (Gruner et al., 1994). However, Lee (2006) indicated that the DNA G+C content of the type strains of B. samyangense and B. album are 70.7 and 70.0 mol%, respectively, and the DNA G+C content of the type strain of Brevibacterium marinum was reported to be 71.4 mol% (Lee, 2008).

Strain Tp12^T can also be discriminated from B. samyangense (Lee, 2006) and B. album (Tang et al., 2008) according to some biochemical and physiological properties. Significantly, strain Tp12^T cannot grow at 45°C, while B. samyangense and B. album can. While B. samyangense grows weakly in 15% NaCl, strain Tp12^T cannot grow at that concentration. Additionally, fermentation tests showed other differences between strain Tp12^T and B. samyangense and B. album isolates (Table 1).

In spite of the similarity to B. samyangense and B. album, strain Tp12^T can be readily differentiated from known species of the genus Brevibacterium with reference to some physiological and biochemical characteristics, cellular fatty acids, 16S rRNA gene sequence and DNA G+C content. On the basis of the data obtained with our polyphasic taxonomic approach, strain Tp12^T merits recognition as a member of a novel species of the genus Brevibacterium, for which we propose the name Brevibacterium pityocampae sp. nov.

Fig. 1. Neighbour-joining tree based on 16S rRNA gene sequences showing the phylogenetic position of Brevibacterium pityocampae sp. nov. Tp12^T within its phylogenetic neighbours in the genus Brevibacterium. Evolutionary distances for tree construction were calculated using the Jukes–Cantor coefficient. Numbers at nodes indicate percentages of bootstrap support based on a neighbour-joining analysis of 1000 iterated datasets. Micrococcus luteus ATCC 381^T was defined as the outgroup. Bar, 1 substitution per 100 nucleotide positions.
Description of \textit{Brevibacterium pityocampa} sp. nov.

\textit{Brevibacterium pityocampa} (pt.ty.o.cam’pae. L. fem. n. \textit{pityocampa} a pine grub; L. fem. gen. n. \textit{pityocampa} of a pine grub, referring to the isolation of the type strain from larvae of \textit{Thaumetopoea pityocampa}).

Cells stain Gram-positive and are non-motile, non-spore-forming rods, 1.0 μm long and 0.5 μm wide. Catalase-positive and oxidase-negative. Colonies are yellow, circular and convex with entire margins. Growth is observed at 25–40 °C, pH 6–10 (optimum pH 8) and 0–10 % NaCl (w/v). No growth in 15 % NaCl (w/v). Both the API 20E system and conventional tests show that arginine dihydrolase and acetoin production are negative. Nitrate is reduced to nitrite. Tests for β-galactosidase, lysine decarboxylase, ornithine decarboxylase, citrate utilization, \(H_2S\) production, urease, tryptophan deaminase, indole production and gelatinase and fermentation of D-glucose, D-mannitol, inositol, D-sorbitol, L-ramnose, sucrose, melibiose, amygdalin and L-arabinose are negative. The fatty acid profile contains predominantly anteiso-C\(_{15:0}\) and anteiso-C\(_{17:0}\). The G+C content of the type strain is 69.8 mol%.

The type strain is Tp12\(^T\) (=DSM 21720\(^T\) =NCCB 100255\(^T\)), isolated from healthy larvae of \textit{Thaumetopoea pityocampa} from the Middle Black Sea region of Turkey.

Acknowledgements

This work was supported by the T. R. Prime Ministry State Planning Organization (21.111.004.1). The authors would like to thank Professor Dr Fikrettin Şahin (Yeditepe University, Istanbul, Turkey) for his help with the fatty acid methyl ester study.

References

