Actinomadura scrupuli sp. nov., isolated from rock

Dong Wan Lee and Soon Dong Lee

Department of Science Education, Jeju National University, Jeju 690-756, Republic of Korea

A novel actinomycete, designated strain R-Ac121T, was isolated from a small stone collected from an agricultural field in Jeju, Republic of Korea. The organism formed abundant vegetative mycelium that was branched and twisted. The reverse colour of colonies was brownish-yellow. Non-motile, wrinkled arthrospores were produced directly on the substrate mycelium. Aerial mycelium and sporangia were not observed. A neighbour-joining tree based on 16S rRNA gene sequences indicated that the isolate formed a distinct clade within the radiation of the family Thermomonosporaceae. The highest 16S rRNA gene sequence identity was found with the type strain of Spirillospora rubra (97.3 % sequence similarity) followed by those of Actinoallomurus purpureus (97.0 %), Actinomadura alba (96.5 %), Actinomadura fibrosa (96.5 %) and Actinomadura echinospora (96.4 %). The cell wall contained meso-diaminopimelic acid. The whole-cell sugars were rhamnose, glucose, ribose, xylose and arabinose. The polar lipids included dihexadecylglycerol, phosphatidylglycerol and phosphatidylglyanol. The major quinone was MK-9(H8) and the predominant fatty acids were iso-C16 : 0, C16 : 0, C17 : 1ω8c and 10-methyl C17 : 0. The DNA G+C content was 71.8 mol%. The combination of morphological, chemotaxonomic and phylogenetic data clearly supports the separation of the organism from recognized species of the genus Actinomadura and related genera. On the basis of the data presented here, strain R-Ac121T represents a novel species of the genus Actinomadura, for which the name Actinomadura scrupuli sp. nov. is proposed. The type strain is strain R-Ac121T (=KCTC 19488T = DSM 45225T).

The genus Actinomadura was established by Lechevalier & Lechevalier (1970) and its description has been emended by Zhang et al. (1998, 2001) and Miyadoh & Miyara (2001). Phylogenetically, the genus belongs to the family Thermomonosporaceae, together with the genera Actinocorallia, Actinoallomurus, Spirillospora and Thermomonospora (Zhang et al., 1998; Trujillo & Goodfellow, 2003; Tamura et al., 2009). At the time of writing, the genus encompasses 40 recognized species and two subspecies (http://www.bacterio.cict.fr/a/actinomadura.html), which were mostly isolated from soil. In this study, we describe the polyphasic taxonomic characterization of an Actinomadura-like strain isolated from rock.

Strain R-Ac121T was isolated from a small stone collected from an agricultural field in Jeju, Republic of Korea. An unwashed stone (1 g) was ground into powder using a pestle and suspended in 10 ml sterile distilled water. Aliquots of serial dilutions were spread onto starch-casein agar (1 % soluble starch, 0.03 % casein, 0.2 % KNO3, 0.2 % NaCl, 0.2 % KH2PO4, 0.002 % CaCO3, 0.005 % MgSO4, 7H2O, 0.001 % FeSO4.7H2O and 1.8 % agar in distilled water, pH 7.2) and the plates were incubated at 30 °C for 2 weeks. A single colony was selected and further streaked on ISP (International Streptomyces Project) medium 2 (Shirling & Gottlieb, 1966). The pure culture was maintained as 20 % (v/v) glycerol suspensions at −20 and −80 °C.

For cultural characterization, strain R-Ac121T was grown for 21 days at 30 °C on ISP media 2, 3, 4, 5, 6 and 7 (Shirling & Gottlieb, 1966), nutrient agar (NA; Difco), trypticase soy agar (TSA; Difco), oatmeal-nitrate agar (Prasser & Bergholz, 1974), humic acid-vitamin (HV) agar (Nonomura & Ohara, 1969) and water agar (15.0 g agar, 1000 ml tap water). Cell morphology was observed by scanning electron microscopy (model JSM 6700F; JEOL), using cells grown on water agar for 3 weeks. The specimen was fixed for 1 h with 1 % OsO4 and dehydrated with graded series of ethanol and then ethanol/isoamyl acetate solutions. After critical-point drying with liquid carbon dioxide, the specimen was coated with platinum before observation. Temperature and pH ranges for growth and NaCl tolerance were determined on ISP medium 2. Utilization of carbohydrates as sole carbon sources was tested on ISP medium 9 (Shirling & Gottlieb, 1966), with each filter-sterilized carbon source being used at a final concentration of 1 % (w/v) for carbohydrates and alcohols and 0.1 % (w/v) for organic acids. Gram staining, oxidase and catalase activities and degradation abilities were determined using the methods described by Lee et al. (2008).

The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain R-Ac121T is FM210339.
Strain R-Ac121T showed good growth on ISP media 2, 3, 4, 5 and 7, NA, oatmeal-nitrate agar, HV agar and water agar and poor growth on ISP medium 6 and TSA. Vegetative mycelium was abundant, branched and twisted. The reverse colour of the colonies was brownish-yellow. Wrinkled arthrospores were borne directly on the substrate mycelium (Fig. 1). Aerial mycelium and soluble pigments were not produced on any of the tested media. Sporangia were not observed. Other physiological and biochemical properties are given in the species description and Table 1.

Genomic DNA was extracted and purified as described by Hopwood \textit{et al.} (1985). Amplification of the 16S rRNA gene by PCR and sequencing of the PCR product were performed as described by Lee & Lee (2008). The 16S rRNA gene sequence was aligned with corresponding sequences obtained from GenBank by using the CLUSTAL\textit{X} program (Thompson \textit{et al.}, 1997). Phylogenetic analyses were performed by using the neighbour-joining (Saitou & Nei, 1987), maximum-likelihood (Fitch, 1971) and maximum-parsimony (Felsenstein, 1981) methods. A phylogenetic tree was constructed by using the NEIGHBOR program in the PHYLIP package (Felsenstein, 1993) from evolutionary distances calculated with the coefficient of Jukes & Cantor (1969). The robustness of the tree topology was assessed by using bootstrap analysis with 1000 replicated datasets (Felsenstein, 1985).

An almost-complete 16S rRNA gene sequence (1402 nt) of strain R-Ac121T determined in this study was compared with the corresponding sequences of members of the genus \textit{Actinomadura} and related taxa. A neighbour-joining phylogenetic tree based on 16S rRNA gene sequences indicated that strain R-Ac121T formed a distinct clade within the radiation of the family \textit{Thermomonosporaceae} (Fig. 2). The highest 16S rRNA gene sequence similarity of strain R-Ac121T to type strains of recognized species of the \textit{Thermomonosporaceae} was found with \textit{Spirillospora rubra} (97.3\% sequence similarity), \textit{Actinoallomurcus purpureus} (97.0\%), \textit{Actinomadura alba} (96.5\%), \textit{Actinomadura fibrosa} (96.5\%) and \textit{Actinomadura echinospora} (96.4\%).

Cell biomass for chemotaxonomic analyses was obtained from cultures grown in ISP 2 broth for 7 days at 30 °C. The isomer of diaminopimelic acid in the cell-wall peptidoglycan was determined by the method of Staneck & Roberts (1974). Whole-cell sugars were analysed as described by Saddler \textit{et al.} (1991). Respiratory quinones were extracted according to Collins (1985) and identified by HPLC (Kroppenstedt, 1985). Analysis of polar lipids was performed by TLC as described previously (Minnikin \textit{et al.}, 1975). Cellular fatty acid methyl esters were prepared and analysed according to the standard protocol of the Microbial Identification System (version 6; MIDI).

Strain R-Ac121T contained \textit{meso}-diaminopimelic acid as the diagnostic diamino acid and rhamnose, glucose, ribose, xylose and arabinose as whole-cell sugars. Madurose (3-O-methyl d-galactose), a characteristic sugar found in most species of the family \textit{Thermomonosporaceae} (Lechevalier & Gerber, 1970), was not detected in our analysis by GC. Like strain R-Ac121T, a few strains of the genus \textit{Thermomonospora} and thermophilic \textit{Actinomadura} species either lack madurose or synthesize it in trace amounts (Kroppenstedt, 1987). The polar lipids included diphosphatidylglycerol, phosphatidylglycerol and phosphatidylinositol. The menaquinone composition was MK-9(H\textsubscript{4}) and MK-9(H\textsubscript{8}) in the ratio of 80:14:6. The cellular fatty acid profile of strain R-Ac121T consisted of saturated, unsaturated, branched and 10-methyl fatty acids. The cellular fatty acid composition was iso-C\textsubscript{16}:0 (23.8\%), C\textsubscript{16}:0 (11.8\%), C\textsubscript{17}:0 isoC\textsubscript{8}c (10.7\%), 10-methyl C\textsubscript{17}:0 (10.7\%), C\textsubscript{18:1} c9c (8.7\%), 10-methyl C\textsubscript{18}:0 (6.6\%), C\textsubscript{17}:0 (4.4\%), C\textsubscript{18}:0 (4.3\%), C\textsubscript{15}:0 (4.2\%), C\textsubscript{16}:1o7c and/or iso-C\textsubscript{15}:0 2-OH (3.6\%), C\textsubscript{19}:0 11c and/or unknown 18.756 (1.2\%), iso-C\textsubscript{14}:0 (1.1\%) and iso-C\textsubscript{18}:0 (1.1\%). The G + C content of the DNA, as determined by HPLC (Mesbah \textit{et al.}, 1989), was 71.8 mol\%.

The five genera \textit{Actinoallomurcus}, \textit{Actinocorallia}, \textit{Actinomadura}, \textit{Spirillospora} and \textit{Thermomonospora} of the family \textit{Thermomonosporaceae} are similar in most of their chemotaxonomic characteristics with the exception of polar lipid profiles (Kroppenstedt, 1985; Zhang \textit{et al.}, 2001; Tamura \textit{et al.}, 2009). However, they can be differentiated from one another by a combination of morphological and chemotaxonomic features. The 16S rRNA gene tree (Fig. 2) reveals that strain R-Ac121T formed a distinct sublineage within the family \textit{Thermomonosporaceae}. Of its phylogenetic neighbours, \textit{S. rubra} showed the highest sequence similarity (97.3\%) to strain R-Ac121T but it, together with \textit{Spirillospora albida}, differs morphologically from strain R-Ac121T in that they form sporangia containing motile spores. \textit{Actinomadura fibrosa} produces thick fibres on
the substrate mycelium, but strain R-Ac121T produces wrinkled arthrospores (Fig. 1). Actinomadura alba, Actinomadura echinospora and members of the genus Actinoallomurus are similar to strain R-Ac121T in that they produce arthrospores, but they can be differentiated from the isolate in some chemotaxonomic characters (i.e. cell-wall sugars, menaquinones and fatty acids). Differential characteristics of strain R-Ac121T from its phylogenetic neighbours are given in Table 1.

On the basis of the morphological, chemotaxonomic and phylogenetic data, strain R-Ac121T represents a novel species of the genus Actinomadura, for which the name Actinomadura scrupuli sp. nov. is proposed.

Description of Actinomadura scrupuli sp. nov.

Actinomadura scrupuli (scrupuli. L. gen. n. scrupuli of a small stone, referring to the isolation of the type strain).

Aerobic, Gram-stain-positive. Cells grow well on ISP media 2, 3, 4, 5 and 7, NA, oatmeal-nitrate agar, HV agar and water agar plates and show poor growth on ISP medium 6 and TSA. The organism forms abundant vegetative mycelium that is branched and twisted. The reverse colour of the colonies is brownish-yellow. Aerial mycelium and soluble pigments are not produced on any of the tested media. Wrinkled arthrospores (0.9–1.1 μm in diameter) are produced directly from the substrate mycelium on water agar. Sporangia are not observed. Growth occurs at

Table 1. Characteristics that differentiate strain R-Ac121T from its phylogenetic neighbours

<table>
<thead>
<tr>
<th>Taxa: 1, R-Ac121T; 2, Actinoallomurus purpureus TTN02-30T (data from Tamura et al., 2009); 3, Actinomadura alba YIM 45681T (Wang et al., 2007); 4, Actinomadura echinospora DSM 43163T (Miyadoh et al., 1990; Holt et al., 1994; Wang et al., 2007); 5, Actinomadura fibrosa ATCC 49459T (Mertz & Yao, 1990; Wink et al., 2003); 6, Spirillospora (Vobis & Kothe, 1989; Wink, 2001; Zhang et al., 2001).</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colour of growth on ISP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aerial mycelium</td>
<td>None</td>
<td>White</td>
<td>White</td>
<td>Yellow–pink</td>
<td>Pink</td>
<td>White</td>
</tr>
<tr>
<td>Substrate mycelium</td>
<td>Brownish-yellow</td>
<td>Pale yellow to reddish-purple</td>
<td>Greyish-yellow</td>
<td>Greyish-yellow</td>
<td>Brown</td>
<td>Beige or red to reddish-brown</td>
</tr>
<tr>
<td>Diffusible pigment</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Tan</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Production of sporangia</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Production of spores</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Motility of spores</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Optimal temperature (°C)</td>
<td>30</td>
<td>25–30</td>
<td>28</td>
<td>35–40</td>
<td>37</td>
<td>25</td>
</tr>
<tr>
<td>Utilization of:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glycerol</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>W</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>myo-Inositol</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Raffinose</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>L-Rhamnose</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>D-Xylose</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>D-Mannitol</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Liquefaction of gelatin</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hydrolysis of starch</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>ND</td>
</tr>
<tr>
<td>Nitrate reduction</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Polar lipids</td>
<td>DPG, PG, PI 9(H4), 9(H4), 9(H4); 9(H6), 9(H8), 9(H2)</td>
<td>DPG, PG, PI 9(H4), 9(H4), 9(H4), 9(H8), 9(H2)</td>
<td>DPG, PG, PI, PIM 9(H4), 9(H4), 9(H8), 9(H2)</td>
<td>DPG, PG, PI, PIM 9(H4), 9(H4), 9(H8), 9(H2)</td>
<td>DPG, PG, PI, PIM 9(H4), 9(H4), 9(H8), 9(H2)</td>
<td>DPG, PI, PIM 9(H4), 9(H4), 9(H8), 9(H2)</td>
</tr>
<tr>
<td>Major fatty acids</td>
<td>C17:0, C17:1 08C, C17:0</td>
<td>C17:0 08C, C17:0</td>
</tr>
<tr>
<td>Cell-wall sugar(s)</td>
<td>Ara, Glc, Rha, Rib, Xyl</td>
<td>Mad, Gal, Ara, Glc, Rha, Rib, Xyl</td>
</tr>
<tr>
<td>DNA G+C content (mol%)</td>
<td>71.8</td>
<td>70.0</td>
<td>66.5</td>
<td>74.0</td>
<td>71.0–73.0</td>
<td>71.0–73.0</td>
</tr>
</tbody>
</table>

*Detected only in the type strain of Spirillospora albida (Vobis & Kothe, 1989; Wink, 2001; Zhang et al., 2001).
†DPG, Diphosphatidylglycerol; PG, phosphatidylglycerol; PI, phosphatidylinositol; PIM, phosphatidylinositol mannosides.
§Ara, Arabinose; Gal, galactose; Glc, glucose; Mad, madurose; Man, mannosone; Rha, rhamnose; Rib, ribose; Xyl, xylose.

di, iso-branched; ai, anteiso-branched; Me, methyl; TSA, tuberculostearic acid (10-methyl C18:0).

http://ijs.sgmjournals.org
pH 6.1–8.1. The temperature range for growth is 20–30 °C. Good growth occurs in the absence of NaCl. Nitrate is reduced to nitrite. Aesculin and gelatin are degraded but not casein, cellulose, chitin, DNA, elastin, hypoxanthine, starch, l-tyrosine or xanthine. Acetate, adonitol, l-arabinose, cellobiose, dextran, D-fructose, D-galactose, D-glucose, glycerol, lactose, DL-malate, melibiose, L-rhamnose, D-sorbitol, l-sorbose, succinate, sucrose, trehalose and D-xylene can be utilized as carbon sources, but D-arabinose, benzoate, citrate, dextran, meso-erythritol, formate, myo-inositol, inulin, D-mannose, melezitose, methyl x-D-glucoside, methyl x-D-mannoside, d-mannitol, raffinose, l-ribose, salicin, l-tartarate and d-xylitol are not utilized. meso-Diaminopimelic acid and rhamnose, glucose, ribose, xylose and arabinose are the diagnostic diamino acid and whole-cell sugars, respectively. The polar lipids include diphasphatidylglycerol, phosphatidylglycerol and phosphatidylinositol. The major menaquinone is MK-9(H₄). The predominant fatty acids are iso-C₁₆:0, C₁₆:1ω₅c and 10-methyl C₁₇:0. The G+C content of the DNA of the type strain is 71.8 mol%.

The type strain, R-Ac121T (=KCTC 19488T =DSM 45225T), was isolated from a small stone in Jeju, Republic of Korea.

Acknowledgements

This work was supported by the 21C Frontier Microbial Genomics and Application Center Program, Ministry of Science & Technology, Republic of Korea.

References

