Oceanobacillus neutriphilus sp. nov., isolated from activated sludge in a bioreactor

Jun-Yi Yang,1,2 Ying-Yi Huo,3 Xue-Wei Xu,1,2 Fan-Xu Meng,1,2 Min Wu3 and Chun-Sheng Wang1,2

1Laboratory of Marine Ecosystem and Biogeochemistry, State Oceanic Administration, Hangzhou 310012, People’s Republic of China
2Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, People’s Republic of China
3College of Life Sciences, Zhejiang University, Hangzhou 310058, People’s Republic of China

A Gram-stain-positive, neutrophilic, rod-shaped bacterium, strain A1gT, was isolated from activated sludge of a bioreactor and was subjected to a polyphasic taxonomic characterization. The isolate grew in the presence of 0–17.0 % (w/v) NaCl and at pH 6.0–9.0; optimum growth was observed in the presence of 3.0–5.0 % (w/v) NaCl and at pH 7.0. Strain A1gT was motile, formed cream-coloured colonies, was catalase- and oxidase-positive and was able to hydrolyse aesculin, Tween 40 and Tween 60. Chemotaxonomic analysis revealed menaquinone-7 as the predominant respiratory quinone and anteiso-C15:0, anteiso-C17:0, iso-C16:0 and iso-C15:0 as major fatty acids. The genomic DNA G+C content of strain A1gT was 36.3 mol%. Comparative 16S rRNA gene sequence analysis revealed that the new isolate belonged to the genus Oceanobacillus and exhibited closest phylogenetic affinity to the type strains of Oceanobacillus oncorhynchi subsp. incaidanensis (97.9 % similarity) and O. oncorhynchi subsp. oncorhynchi (97.5 %), but less than 97 % sequence similarity with respect to the type strains of other recognized Oceanobacillus species. Levels of DNA–DNA relatedness between strain A1gT and reference strains O. oncorhynchi subsp. incaidanensis DSM 16557T, O. oncorhynchi subsp. oncorhynchi JCM 12661T and Oceanobacillus iheyensis DSM 14371T were 29, 45 and 38 %, respectively. On the basis of phenotypic and genotypic data, strain A1gT is considered to represent a novel species of the genus Oceanobacillus, for which the name Oceanobacillus neutriphilus sp. nov. is proposed. The type strain is A1gT (=CGMCC 1.7693T =JCM 15776T).

The genus Oceanobacillus was proposed by Lu et al. (2001, 2002) with the description of Oceanobacillus iheyensis as the type species; the description of the genus was later emended by Yumoto et al. (2005) and Lee et al. (2006). The genus Oceanobacillus comprises aerobic, Gram-positive, motile, rod-shaped bacteria that are characterized chemo-taxonomically by the presence of menaquinone-7 as the major isoprenoid quinone and anteiso-C15:0 as the predominant cellular fatty acid (Lee et al., 2006).

At the time of writing, the genus comprises seven recognized species, including two subspecies. Members of the genus have been isolated from diverse sources such as deep-sea sediment (Oceanobacillus iheyensis Lu et al., 2002; O. profundus Kim et al., 2007), mural paintings (O. picturae (Heyrman et al., 2003) Lee et al., 2006), freshwater fish (Oceanobacillus oncorhynchi Yumoto et al., 2005), algae (Oceanobacillus oncorhynchi Yumoto et al., 2005, 2006). The aim of the present study was to determine the exact taxonomic position of a novel Oceanobacillus-like strain by using a polyphasic approach that included analysis of phenotypic properties and phylogenetic analysis based on 16S rRNA gene sequences and DNA–DNA relatedness data.
Strain A1gT was isolated from activated sludge of a sequential batch reactor treating salt-containing wastewater taken from a preserved Szechuan pickle factory. The reactor had been operational for 9 months at the time when the sludge was sampled. The average in situ temperature was 30 °C and the pH was approximately 7.4. The sludge sample was suspended in sterile wastewater and vortexed for 15 min. A portion of the suspension was spread directly on sterile wastewater agar plates, which contained (per litre wastewater) 1.0 g glucose, 1.0 g peptone (BD) and 15.0 g agar (pH 7.0). The plates were incubated at 30 °C for several days. Single colonies on the plates were picked out and strain A1gT was obtained by repeated restreaking. This isolate was routinely cultured on marine agar 2216 (MA; BD) and was maintained as a glycerol suspension (30% v/v) at −80 °C.

The optimal conditions for growth were determined in PY broth (Lu et al., 2001) with different NaCl concentrations (0, 0.5, 1, 3, 5, 7.5, 10, 12.5, 15, 16, 17, 18, 19, 20, 22.5 and 25%, w/v). The pH range for growth was determined by adding MES (pH 5.0–6.0), PIPES (pH 6.5–7.0), Tricine (pH 7.5–8.5), CAPSO (pH 9.0–10.0) or CAPS (pH 10.5) to PY broth supplemented with 3% (w/v) NaCl. The temperature range for growth was determined in PY broth (pH 7.0) at 4, 10, 15, 20, 25, 30, 35, 37, 40, 42, 45 and 48 °C. Cell morphology and motility were examined by optical microscopy (Olympus BX40) and electron microscopy (Hitachi H-7650 and JEOL JEM-1230).

Oxidase activity was determined based on oxidation of 1% p-aminodimethylamine oxalet and catalase activity was determined based on bubble production in 3% (v/v) H₂O₂ solution (Dong & Cai, 2001). Biochemical characteristics were determined according to the methods described by Dong & Cai (2001) and Romano et al. (2006). Single carbon source assimilation tests were performed by using medium 2 supplemented with 3% (w/v) NaCl (Romano et al., 2006). The corresponding filter-sterilized sugar (0.2%), alcohol (0.2%), organic acid (0.1%) or amino acid (0.1%) was added to liquid medium. Acid production was tested by using MOF medium supplemented with 1.0% sugars or alcohols (Leifson, 1963; Xu et al., 2008). Susceptibility to antibiotics was determined on agar plates by using antibiotic discs with the following compounds (amounts in μg unless otherwise stated): amoxicillin (10), ampicillin (10), carbenicillin (100), cefotaxime (30), cefoxitin (30), chloramphenicol (30), erythromycin (15), kanamycin (30), neomycin (30), nitrofurantoin (300), novobiocin (30), nystatin (100), penicillin (10), polymyxin B (300 IU), rifampicin (5), streptomycin (10) and tetracycline (30). Additional enzyme activities and biochemical characteristics were determined by using API 20E, API 20 NE, API 50 CH and API ZYM kits as recommended by the manufacturer (bioMérieux). O. iheyensis DSM 14371T, O. oncorhynchi subsp. oncorhynchi JCM 12661T and O. oncorhynchi subsp. incaledanensis DSM 16557T were used as controls in these tests.

Fatty acid methyl esters were obtained from cells grown on MA for 2 days at 35 °C and were analysed by using GC/MS (Kuykendall et al., 1988). Isoprenoid quinones were analysed as described by Komagata & Suzuki (1987) by using reversed-phase HPLC. Cell-wall peptidoglycan was prepared and hydrolysed according to the methods given by Kawamoto et al. (1981) and the amino acid composition was analysed with an automatic amino acid analyser (Hitachi L-8900). Genomic DNA was obtained by using the method described by Marmur (1961). Purified DNA was hydrolysed with P1 nuclease and the nucleotides were dephosphorylated with calf intestine alkaline phosphatase; the G + C content of the resulting deoxyribonucleosides was determined by reversed-phase HPLC and was calculated from the ratio of deoxyguanosine to thymidine (Mesbah & Whitman, 1989).

The 16S rRNA gene was amplified and analysed as described by Xu et al. (2007). PCR products were cloned into pMD 19-T vector (TaKaRa) and then sequenced. An almost-complete 16S rRNA gene sequence of strain A1gT (1484 nt) was obtained and was compared with closely related sequences of reference organisms from the EzTaxon service (Chun et al., 2007). Sequence data were aligned with CLUSTAL W 1.8 (Thompson et al., 1994). Phylogenetic trees were constructed by using the neighbour-joining (Saitou & Nei, 1987) and maximum-likelihood method (Felsenstein, 1981) with the TreePuzzle 5.2 program. Evolutionary distances were calculated according to the algorithm of Kimura’s two-parameter model (Kimura, 1980) for the neighbour-joining method. Bootstrap analysis was used to evaluate the tree topology by means of 1000 resamplings.

Cells of strain A1gT were Gram-stain-positive, sporulating rods that were motile by means of polar flagella (Fig. 1). The NaCl concentration, pH and temperature ranges for growth in PY broth were 0–17% (w/v), pH 6.0–9.0 and 10–45 °C. The cell-wall diamino acid was meso-diaminopimelic acid. The isoprenoid quinone of strain A1gT was MK-7 and the DNA G + C content was 36.3 mol%. These chemotaxonomic characteristics were in accordance with those given for the genus Oceanobacillus (Yumoto et al., 2005; Lee et al., 2006). Detailed results are given in the species description below and in Table 1.

16S rRNA gene sequence comparisons showed that strain A1gT should be placed within the genus Oceanobacillus, being related most closely to the type strains of O. oncorhynchi subsp. incaledanensis (97.9% similarity), O. oncorhynchi subsp. oncorhynchi (97.5%) and O. iheyensis (96.3%); levels of 16S rRNA gene sequence similarity with respect to the type strains of other recognized Oceanobacillus species were 94.2–95.3%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain A1gT had closest affinity with the type strains of O. oncorhynchi and O. iheyensis with high levels of bootstrap support (Fig. 2). The topologies of the
phylogenetic trees built by using the maximum-parsimony and maximum-likelihood methods also supported the notion that strain A1gT formed a stable clade with the type strains of \textit{O. oncorhynchi} and \textit{O. iheyensis} (Supplementary Fig. S1 in IJSEM Online).

DNA–DNA hybridization experiments were performed by the thermal denaturation and renaturation method of De Ley \textit{et al.} (1970) as modified by Huß \textit{et al.} (1983), by using a Beckman DU 800 spectrophotometer. Levels of DNA–DNA relatedness between strain A1gT and \textit{O. oncorhynchi} subsp. \textit{incaldanensis} DSM 16557T, \textit{O. oncorhynchi} subsp. \textit{iheyensis} JCM 12661T and \textit{O. oncorhynchi} subsp. \textit{incaldanensis} DSM 16557T were 29, 45 and 38 %, respectively, significantly below the value of 70 % which is considered to be the threshold for the delineation of species (Wayne \textit{et al.}, 1987).

The major fatty acids of strain A1gT were anteiso-C\textsubscript{15:0} (37.7 %), anteiso-C\textsubscript{17:0} (18.9 %), iso-C\textsubscript{16:0} (15.8 %) and iso-C\textsubscript{15:0} (6.8 %). This profile was different from those of \textit{O. iheyensis} DSM 14371T and \textit{O. oncorhynchi} subsp. \textit{incaldanensis} DSM 16557T (Supplementary Table S1). The iso-C\textsubscript{14:0} content of strain A1gT (3.8 %) was lower than that of \textit{O. oncorhynchi} subsp. \textit{incaldanensis} DSM 16557T (17.5 %) and \textit{O. iheyensis} DSM 14371T (17.0 %). Additionally, strain A1gT could be differentiated from recognized \textit{Oceanobacillus} species on the basis of several phenotypic characteristics, such as cultural conditions, nitrate reduction, hydrolysis of substrates, acid production from sugars or alcohols, susceptibility to antibiotics and enzyme activities (Table 1).

On the basis of the genotypic and phenotypic data presented in this study, strain A1gT should be assigned to a novel species within the genus \textit{Oceanobacillus}, for which the name \textit{Oceanobacillus neutriphilus} sp. nov. is proposed.

Description of \textit{Oceanobacillus neutriphilus} sp. nov.

\textit{Oceanobacillus neutriphilus} (\textit{neu.tri.phi’lus}. L. adj. neuter -tra -trum neither, used to refer to neutral pH; Gr. adj. \textit{philos} loving; N.L. masc. adj. \textit{neutriphilus} preferring neutral pH).

Cells are Gram-positive-staining, aerobic rods, 0.7–1.2 \textmu m wide and 1.5–2.5 \textmu m long with rounded ends, that are motile by means of polar flagella and produce ellipsoidal spores in a central position. Colonies on MA are 1–2 mm in diameter, of low convexity, smooth, circular with regular borders and cream-coloured after 48 h. Growth occurs in PY medium at NaCl concentrations of 0–17.0 % (w/v) with optimum growth at 3.0–5.0 %. The pH and temperature ranges for growth are 6.0–9.0 and 10–45 \textdegree C (optimum growth at pH 7.0 and 37 \textdegree C). No growth is detected below pH 5.5 or above pH 9.5. Positive for oxidase and catalase. Hydrolyses aesculin, Tween 40 and Tween 60, but not casein, DNA, gelatin, starch, Tween 80 or tyrosine. Nitrates is not reduced to nitrite. \textit{H}_2\textit{S} is not produced from thiosulfate. Positive for \textit{o}-nitrophenyl-\textit{b}-D-galactopyranosidase. Negative for arginine dihydrolase, indole production, lysine decarboxylase, ornithine decarboxylase, tryptophan deaminase and urease. Utilizes D-fructose, D-glucose, malto, manitol, D-mannose and sucrose as sole carbon and energy sources, but not acetate, L-alanine, L-arabinose, citrate, L-cysteine, ethanol, formate, fumarate, glutamate, L-glutamine, glycine, L-histidine, isoleucine, lactate, lactose, malate, malonate, L-methionine, myo-inositol, L-ornithine, propionate, pyruvate, raffinose, L-serine, L-sorbitol, L-sorbose, starch, succinate or L-valine. Acid is produced from D-glucose, malto, D-mannose and sucrose, but not from L-arabinose, ethanol, \textit{myo}-inositol, lactose, raffinose, L-sorbitol or L-sorbose. Susceptible to (\textmu g per disc unless indicated otherwise) amoxicillin (10), ampicillin (10), carbenicillin (100), cefotaxime (30), chloramphenicol (30), erythromycin (15), kanamycin (30), neomycin (30), nitrofurantoin (300), novobiocin (30) and rifampicin (5), but not to cefoxitin (30), nystatin...
Table 1. Differential characteristics between strain A1g^T and the type strains of related members of *Oceanobacillus*

Strains: 1, A1g^T; 2, *O. oncorhynchi* subsp. *incaldanensis* DSM 16557^T; 3, *O. oncorhynchi* subsp. *oncorhynchi* JCM 12661^T; 4, *O. iheyensis* DSM 14371^T. Data were obtained in the present study unless indicated. +, Positive; −, negative; w, weakly positive.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spore position*</td>
<td>C</td>
<td>NS</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>NaCl range for growth (% w/v)</td>
<td>0–17.0</td>
<td>0–20.0</td>
<td>0–22.5</td>
<td>0–18.0</td>
</tr>
<tr>
<td>NaCl optimum (% w/v)</td>
<td>3.0–5.0</td>
<td>10.0</td>
<td>7.5–10.0</td>
<td>3.0–5.0</td>
</tr>
<tr>
<td>Growth temperature range (°C)</td>
<td>10–45</td>
<td>10–45</td>
<td>10–45</td>
<td>15–42</td>
</tr>
<tr>
<td>pH optimum</td>
<td>7.0</td>
<td>9.0</td>
<td>9.5</td>
<td>8.0–8.5</td>
</tr>
<tr>
<td>Nitrate reduction</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>o-Nitrophenyl-β-D-galactopyranosidase</td>
<td>+</td>
<td>−</td>
<td>+</td>
<td>−</td>
</tr>
</tbody>
</table>

Hydrolysis of:

- Casein: −
- Gelatin: −
- Tween 60: +
- Urea: −

<table>
<thead>
<tr>
<th>Acid production from:</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arbutin</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Cellobiose</td>
<td>w</td>
<td>+</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Gentibiose</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Glycerol</td>
<td>w</td>
<td>−</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>D-Mannitol</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>w</td>
</tr>
<tr>
<td>Raffinose</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>Salcin</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Sucrose</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>D-Tagatose</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Trehalose</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sensitivity to:</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cefotaxime (30 μg)</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Cefoxitin (30 μg)</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Nitrofurantoin (300 μg)</td>
<td>+</td>
<td>−</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Penicillin G (10 μg)</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Streptomycin (10 μg)</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+</td>
</tr>
</tbody>
</table>

API ZYM results

- *α*-Chymotrypsin: +
- *α*-Glucosidase: +
- *β*-Glucosidase: +

DNA G+C content (mol%) (HPLC): 36.3, 40.1[†], 38.5^b, 35.8^c

^{*C, Central; NS, not sporulated; T, terminal.}

[†]Data from: a, Romano et al. (2006); b, Yumoto et al. (2005); c, Lu et al. (2001).

Fig. 2. Neighbour-joining tree based on 16S rRNA gene sequences, showing the phylogenetic relationships between strain A1g^T and related taxa. Bootstrap values at nodes are based on 1000 replicates; only values >50% are shown. Filled circles indicate nodes recovered with bootstrap values >50% in the maximum-parsimony and maximum-likelihood trees. Bar, 0.02 substitutions per nucleotide position.
The type strain, A1g^T (= CGMCC 1.7693^T = JCM 15776^T), was isolated from activated sludge of a bioreactor treating salt-containing wastewater.

Acknowledgements

This work was supported by grants from the Ministry of Science and Technology of China (973 Program, 2004CB719604-3; 863 Program, 2007AA021305), the National Natural Science Foundation of China (40806066), the China Ocean Mineral Resources R & D Association (COMRA) Special Foundation (DYXM-115-01-3-01, DYXM-115-01-3-02) and the Key Project of Zhejiang Science and Technology of China (973 Program, 2004CB719604-3; 863 Program, no. 85).

References

