Pandoraea thiooxydans sp. nov., a facultatively chemolithotrophic, thiosulfate-oxidizing bacterium isolated from rhizosphere soils of sesame (Sesamum indicum L.)

Rangasamy Anandham,1,2 Pandiyan Indiragandhi,2,3 Soon Wo Kwon,4 Tong Min Sa,2 Che Ok Jeon,5 Yong Ki Kim1 and Hyeong Jin Jee1

Correspondence
Tong Min Sa
tomsa@chungbuk.ac.kr

1Organic Agriculture Division, National Academy of Agricultural Science (formerly National Institute of Agricultural Science and Technology), Rural Development Administration, Suwon 441-707, Republic of Korea
2Department of Agricultural Chemistry, Chungbuk National University, Cheongju 361-763, Republic of Korea
3Department of Agricultural Biology, Chungbuk National University, Cheongju 361-763, Republic of Korea
4Korean Agricultural Culture Collection, National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Republic of Korea
5Department of Life Science, Chung-Ang University, Seoul 156-756, Republic of Korea

A facultatively chemolithoautotrophic, thiosulfate-oxidizing, Gram-negative, aerobic, motile, rod-shaped bacterial strain, designated ATSB16T, was isolated from rhizosphere soils of sesame (Sesamum indicum L.). 16S rRNA gene sequence analysis demonstrated that this strain was closely related to Pandoraea pnomenusa LMG 18087T (96.7 % similarity), P. pulmonicola LMG 18016T (96.5 %), P. apista LMG 16407T (96.2 %), P. norimbergensis LMG 18379T (96.1 %) and P. sputorum LMG 18819T (96.0 %). Strain ATSB16T shared 96.0–96.4 % sequence similarity with four unnamed genomospecies of Pandoraea. The major cellular fatty acids of the strain ATSB16T were C17:0 cyclo (33.0 %) and C16:0 (30.6 %). Q-8 was the predominant respiratory quinone. The major polar lipids were phosphatidylmethylethanolamine, diphosphatidylglycerol, phosphatidylethanolamine and two unidentified aminophospholipids. Hydroxyputrescine and putrescine were the predominant polyamines. The genomic DNA G+C content of the strain was 64.0 mol%. On the basis of the results obtained from this study, strain ATSB16T represents a novel species of the genus Pandoraea, for which the name Pandoraea thiooxydans sp. nov. is proposed. The type strain is ATSB16T (=KACC 12757T =LMG 24779T).

Currently, the genus Pandoraea consists of five species, namely Pandoraea pnomenusa, P. pulmonicola, P. apista, P. norimbergensis and P. sputorum, and four genomospecies (Coenye et al., 2000; Daneshvar et al., 2001). During a study of thiosulfate-oxidizing bacterial populations in sesame rhizosphere soils, one of the isolates, strain ATSB16T, was subjected to phenotypic, genotypic and chemotaxonomic investigations in order to determine its taxonomic position.

Rhizosphere soil samples were collected from sesame (Sesamum indicum L.) cultivated in fields in Jung ha-dong (35° 10′–17′ N 128° 49′–56′ E), Republic of Korea. Rhizosphere soil (soil still attached to the roots after gentle shaking) and fine roots (approximately 1 cm in length) from five plants were pooled into one sample, homogenized by thorough hand-mixing and used for enrichment isolation. Each rhizosphere soil sample (10 g) was added to 100 ml liquid mineral salts thiosulfate (MST) medium (Mukhopadhyaya et al., 2000) and incubated in a rotary shaker at 30 °C, in the dark to avoid any growth of phototrophic bacteria, until the colour of the indicator in the medium, bromcresol purple, changed to yellow. To isolate pure cultures, 10-fold dilutions (10^2–10^6) were made with sterile deionized water and 0.2 ml aliquots were spread with sterile glass sticks on MST agar. Colonies that developed a yellow halo against a purple background, indicative of the production of sulfuric acid resulting from

The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain ATSB16T is EF397578.
the oxidation of thiosulfate, were selected, streaked on solid MST medium and subcultured until one unique type of colony was observed. Strain ATSB16^T was one of the isolates that could be distinguished in terms of colony morphology and rate and extent of acid production in MST medium. The strain was maintained on MST agar and subcultured every week.

The 16S rRNA gene sequence of strain ATSB16^T was determined by PCR amplification and direct sequencing as described previously (Anandham et al. 2008a, b). A phylogenetic analysis was performed with multiple sequence alignments using CLUSTAL W version 1.8 (Thompson et al., 1994). Phylogenetic trees were constructed with neighbour-joining (Saitou & Nei, 1987), maximum-parsimony (Fitch, 1971) and maximum-likelihood (Felsenstein, 1981) methods using the program MEGA3 (Kumar et al., 2004) and bootstrap values based on 1000 replications were calculated (Felsenstein, 1985).

Gram-staining was performed by using a Gram-staining kit (Difco) and qualitative tests for catalase and oxidase activities were performed using catalase and oxidase strips (Difco), according to the manufacturer’s instructions. Cell morphology was observed under transmission and scanning electron microscopes. Growth under heterotrophic conditions was monitored for 10 days at 30 °C in mineral salts medium without thiosulfate with several organic compounds (sodium succinate, sodium acetate, sodium citrate, D-glucose, D-fructose, α-lactose, D-mannose, sucrose, xylose, glycerol, mannitol, L-glutamic acid, sorbitol, malic acid, L-glutamine, L-cysteine, yeast extract, methanol and starch; 0.2 %, w/v, for each carbohydrate and 0.1 %, w/v, for each organic acid, sugar alcohol and yeast extract). Chemo-organotrophic growth was tested on Luria–Bertani agar, nutrient agar, tryptic soy agar (TSA) and R2A agar (all from Difco). The ability to oxidize and grow on different reduced sulfur compounds was tested by using mineral salts medium supplemented with one of the following compounds: thiosulfate (20 mM), tetrathionate (10 mM), sulfite (3 mM in 50 mM EDTA to prevent autooxidation), thiocyanate (2 mM) and elemental sulfur (0.1 %, w/v). Mixotrophic growth (i.e., concurrent utilization of organic and inorganic substrates) was examined in mixotrophic medium as described by Anandham et al. (2007). The pH range for growth was determined in R2A broth from pH 4.0 to 10.0, in increments of 0.5 pH units. All of the basic physiological and biochemical tests were performed at 30 °C according to Gerhardt et al. (1994). Growth at various NaCl concentrations (1–7 %) and temperatures (4–50 °C) was investigated in R2A broth. Physiological and biochemical properties were further determined with the API ZYM, API 20NE and ID 32 GN systems (bioMérieux), according to the manufacturer’s instructions.

For the analysis of the cellular fatty acids, cells grown on TSA plates at 30 °C for 48 h were used. Fatty acid methyl esters were extracted and prepared by using the standard protocol of the Microbial Identification System (Microbial ID). The G+C content was determined by HPLC analysis of deoxyribonucleosides as described by Mesbah et al. (1989) using a reversed-phase column (Supelcosil LC-18-S; Supelco). Polar lipids were extracted and analysed by two-dimensional TLC according to Minnikin et al. (1984). Polyamines and isoprenoid quinones were extracted and analysed in HPLC, as described by Busse et al. (1997) and Groth et al. (1996), respectively.

An almost-complete 16S rRNA gene sequence of strain ATSB16^T was obtained (1410 bp). Preliminary sequence comparisons with 16S rRNA gene sequences retrieved from the GenBank database indicated that strain ATSB16^T belonged to the family Burkholderiaceae of the Betaproteobacteria. 16S rRNA gene sequence analysis revealed that strain ATSB16^T is closely related to <i>P. pnomenusa</i> LMG 18087^T (96.7 % similarity), <i>P. pulmonicola</i> LMG 18016^T (96.5 %), <i>P. apista</i> LMG 16407^T (96.2 %), <i>P. norimbergensis</i> LMG 18379^T (96.1 %), <i>P. sputorum</i> LMG 18819^T (96.0 %), <i>Pandoraea</i> genospecies 1 R-5199 and <i>Pandoraea</i> genospecies 2 CDC G5084 (96.0 %), <i>Pandoraea</i> genospecies 3 CDC G9805 (96.2 %) and <i>Pandoraea</i> genospecies 4 CDC H652 (96.4 %). The overall topologies of the maximum-parsimony and maximum-likelihood trees were similar to that of the neighbour-joining tree. The phylogenetic analysis revealed that strain ATSB16^T formed a line of descent that was separate from the genus <i>Pandoraea</i>, which was supported by a high bootstrap value (Fig. 1).

After 2 days on R2A, colonies of strain ATSB16^T were white, circular and convex with clear margins. Cells were Gram-negative, aerobic, rod-shaped and motile by means of a single polar flagellum (Fig. 2). The strain grew chemolithoautotrophically on reduced sulfur compounds such as thiosulfate, sulfur and sulfite and chemo-organoheterotrophically on several single carbon sources. The strain did not require yeast extract or vitamins under either of these conditions. Both strain ATSB16^T and <i>P. norimbergensis</i> DSM 11628^T exhibited mixotrophic growth in mineral salts medium containing 20 mM thiosulfate plus 20 mM sodium acetate or glucose. <i>P. norimbergensis</i> DSM 11628^T could also grow chemolithoautotrophically with thiosulfate (Table 1). Mixotrophic growth may be metabolically advantageous, because low concentrations of sulfur compounds can limit growth and so the use of organic carbon for biomass synthesis, or even the co-oxidation of sulfur compounds with organic substrates, may ensure the better survival and growth of sulfur-oxidizing bacteria in the rhizosphere (Anandham et al., 2007). In a previous study, we reported that strain ATSB16^T could use the tetrathionate-intermediate (S4-I) pathway for thiosulfate oxidation and that extracellular accumulation of elemental sulfur was observed during thiosulfate oxidation (Anandham et al., 2008b). Strain ATSB16^T was able to fix nitrogen in nitrogen-free NFb medium but did not yield a positive ampiclon with niFH-specific primers (Anandham et al., 2008a).
In the present study, lipase (C14), valine arylamidase, cystine arylamidase, trypsin, \(\alpha \)-chymotrypsin, \(\alpha \)- and \(\beta \)-galactosidases, \(\beta \)-glucuronidase, \(\alpha \)- and \(\beta \)-glucosidases, \(N \)-acetyl-\(\beta \)-glucosaminidase, \(\alpha \)-mannosidase and \(\alpha \)-fucosidase were not found in strain ATSB16\(^T\) or any of the recognized Pandoraea species. The absence of aesculin and gelatin hydrolysis and \(N \)-acetylglucosamine assimilation and the presence of leucine arylamidase activity and utilization of phenylacetic acid were observed in strain ATSB16\(^T\) and all of the recognized Pandoraea species. These results are in good agreement with previous results (Coenye et al., 2000). However, Coenye et al. (2000) reported the absence of assimilation of substrates such as L-arabinose and D-mannitol and the presence of alkaline phosphatase activity in Pandoraea species, for which the present study observed discrepancies. Such laboratory-to-laboratory discrepancies show the importance of obtaining and testing valid reference strains to verify their reactions with in-house procedures (Daneshvar et al., 2001). Strain ATSB16\(^T\) can be differentiated from other Pandoraea species on the basis of its ability to assimilate D-mannose, maltose, L-rhamnose and L-fucose and inability to assimilate capric acid. The characteristics that differentiate strain ATSB16\(^T\) from other recognized Pandoraea species are shown in Table 1.

The fatty acid analysis revealed that strain ATSB16\(^T\) had a similar fatty acid profile to those of other Pandoraea species. However, it can be differentiated from other Pandoraea species on the basis of large amounts of \(C_{16:0} \) (30.6 %) and \(C_{17:0} \) cyclo (33.0 %) and a small amount of \(C_{18:1} \) \(\omega 7c \) (3.0 %) (Table 2). The major quinone in strain ATSB16\(^T\) was ubiquinone 8 (Q-8) and the predominant polyamines were 2-hydroxyputrescine and putrescine. The DNA G+C content of strain ATSB16\(^T\) was 64.0 mol%, which is within the range reported for other Pandoraea species (61.2–64.3 mol%) (Coenye et al., 2000). Strain ATSB16\(^T\) contained the polar lipids phosphatidylmethyl ethanolamine, diphosphatidylglycerol, phosphatidylethanolamine and unidentified aminophospholipids (Fig. 3). The genotypic, phenotypic and chemotaxonomic data obtained from this study clearly demonstrate that strain ATSB16\(^T\) represents a novel Pandoraea species, for which we propose the name Pandoraea thiooxydans sp. nov.

Description of Pandoraea thiooxydans sp. nov.

Pandoraea thiooxydans (thi.o.ox’y.dans. Gr. n. theion sulfur; N.L. v. oxydo to make acid, oxidize; N.L. part. adj. thiooxydans oxidizing sulfur).
Displays the following properties in addition to those given in Table 1. After 2 days on R2A, colonies are white, circular and convex with clear margins. Cells are Gram-negative, aerobic, rod-shaped and motile by means of a single polar flagellum, 0.5–0.7 μm wide and 1.2–4.5 μm long. Negative for catalase. Positive for oxidase and urease. Reduces nitrate and hydrolyses Tween 80. Grows at 4–42 °C (optimum 30 °C) and pH 4.0–10.0 (optimum pH 7.0). Produces acid in O/F glucose medium and grows with 5% NaCl. Sensitive to ampicillin, kanamycin, chloramphenicol and trimethoprim and resistant to nalidixic acid. Grows chemolithoautotrophically with thiosulfate, tetrathionate, sulfur and sulfite but not with thiocyanate. Elemental sulfur is deposited extracellularly during growth on media containing thiosulfate. Yeast extract or vitamins are not required for growth. Grows chemo-organoheterotrophically on tryptic soy agar, Luria–Bertani agar, nutrient agar and cetrimide agar. Assimilates D-mannose, maltose, L-rhamnose and L-fucose; does not assimilate capric acid.

Characteristic	1	2	3	4	5	6
Catalase | – | + | + | + | + | +
Growth with 4.5% NaCl | + | – | – | – | – | –
Glucose fermentation | + | – | – | – | – | –
Chemolithoautotrophic oxidation of thiosulfate | + | – | – | – | – | +
Mixotrophic growth with thiosulfate* | + | – | – | – | – | +
Assimilation of:
1-Arabinose | – | – | – | – | – | +
1-Fucose | + | – | – | – | – | –
D-Glucose | + | w | + | + | – | +
D-Mannose | + | – | – | – | – | –
D-Mannitol | + | – | – | – | – | –
Maltose | + | – | – | – | – | –
L-Rhamnose | + | – | – | – | – | –
D-Sorbitol | + | – | – | – | – | +
Potassium gluconate | w | + | + | + | + | +
Sodium malonate | w | – | – | – | – | –
Adipic acid | + | + | – | – | – | w
Capric acid | – | + | + | + | + | +
3-Hydroxybenzoic acid | – | w | + | + | + | +
4-Hydroxybenzoic acid | – | w | + | + | + | +
Lactic acid | + | + | + | – | w
Propionic acid | + | w | + | + | + | +
Suberic acid | w | + | – | – | – | –
Glycogen | w | – | – | – | – | –
L-Serine | + | + | + | + | + | W
Enzyme activity
Esterase (C4) | w | + | + | + | + | +
Esterase lipase (C8) | – | – | – | – | – | –
Acid phosphatase | – | + | + | w | +
Alkaline phosphatase | – | – | w | + | – | +
Arginine dihydrolase | + | – | – | – | – | –
DNA G+C content (mol%) | 64.0 | 64.3† | 61.8† | 61.8† | 61.9† | 63.2†

*Result with mineral salts medium amended with 20 mM thiosulfate plus 20 mM sodium acetate or glucose.
†Taken from Coenye et al. (2000).
Table 2. Cellular fatty acid compositions of strain ATSB16^T and type strains of the genus Pandoraea

Strains: 1, Pandoraea thiooxydans sp. nov. ATSB16^T; 2, P. pnemonena LMG 18087^T; 3, P. apista LMG 16407^T; 4, P. pulmonicola LMG 18016^T; 5, P. sputorum LMG 18819^T; 6, P. norimbergensis DSM 11628^T. Data were obtained in this study. Cells were harvested after growth on TSA for 2 days at 30°C. ECL, Equivalent chain-length; tr, trace (less than 0.5 %).

<table>
<thead>
<tr>
<th>Fatty acids (%)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>C<sub>10:0</sub></td>
<td>tr</td>
<td>tr</td>
<td>tr</td>
<td>tr</td>
<td>tr</td>
<td>tr</td>
</tr>
<tr>
<td>C<sub>12:0</sub></td>
<td>3.5</td>
<td>2.1</td>
<td>2.2</td>
<td>3.1</td>
<td>3.0</td>
<td>2.4</td>
</tr>
<tr>
<td>C<sub>12:0 2-OH</sub></td>
<td>–</td>
<td>tr</td>
<td>tr</td>
<td>tr</td>
<td>tr</td>
<td>tr</td>
</tr>
<tr>
<td>C<sub>12:0 3-OH</sub></td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>C<sub>13:0</sub></td>
<td>tr</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>C<sub>13:1 AT 12–13</sub></td>
<td>tr</td>
<td>tr</td>
<td>tr</td>
<td>tr</td>
<td>tr</td>
<td>tr</td>
</tr>
<tr>
<td>C<sub>14:0</sub></td>
<td>0.8</td>
<td>0.7</td>
<td>tr</td>
<td>tr</td>
<td>tr</td>
<td>tr</td>
</tr>
<tr>
<td>iso-C<sub>14:0 3-OH</sub></td>
<td>–</td>
<td>–</td>
<td>tr</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>C<sub>14:1 iso5c</sub></td>
<td>–</td>
<td>–</td>
<td>tr</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>C<sub>15:0 3-OH</sub></td>
<td>–</td>
<td>–</td>
<td>tr</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>C<sub>15:0 iso5c</sub></td>
<td>tr</td>
<td>–</td>
<td>–</td>
<td>tr</td>
<td>–</td>
<td>tr</td>
</tr>
<tr>
<td>C<sub>16:0</sub></td>
<td>30.6</td>
<td>24.7</td>
<td>24.8</td>
<td>20.3</td>
<td>18.9</td>
<td>17.8</td>
</tr>
<tr>
<td>C<sub>16:0 2-OH</sub></td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>tr</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>C<sub>16:0 3-OH</sub></td>
<td>1.7</td>
<td>4.7</td>
<td>5.9</td>
<td>5.8</td>
<td>6.4</td>
<td>4.7</td>
</tr>
<tr>
<td>C<sub>16:1 2-OH</sub></td>
<td>tr</td>
<td>–</td>
<td>–</td>
<td>tr</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>C<sub>16:1 iso5c</sub></td>
<td>0.8</td>
<td>tr</td>
<td>–</td>
<td>tr</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>iso-C<sub>16:0</sub></td>
<td>2.1</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>C<sub>17:0</sub></td>
<td>0.6</td>
<td>tr</td>
<td>tr</td>
<td>tr</td>
<td>0.7</td>
<td>0.6</td>
</tr>
<tr>
<td>C<sub>17:0 cyclo</sub></td>
<td>33.0</td>
<td>10.7</td>
<td>9.9</td>
<td>8.0</td>
<td>13.3</td>
<td>4.5</td>
</tr>
<tr>
<td>iso-C<sub>17:0 3-OH</sub></td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>C<sub>18:0</sub></td>
<td>tr</td>
<td>1.4</td>
<td>1.1</td>
<td>1.4</td>
<td>1.5</td>
<td>2.5</td>
</tr>
<tr>
<td>C<sub>18:1 2-OH</sub></td>
<td>tr</td>
<td>tr</td>
<td>0.5</td>
<td>0.5</td>
<td>–</td>
<td>tr</td>
</tr>
<tr>
<td>C<sub>18:1 iso5c</sub></td>
<td>tr</td>
<td>tr</td>
<td>tr</td>
<td>tr</td>
<td>tr</td>
<td>–</td>
</tr>
<tr>
<td>C<sub>18:1 iso7c</sub></td>
<td>3.0</td>
<td>23.7</td>
<td>24.1</td>
<td>25.3</td>
<td>28.1</td>
<td>35.5</td>
</tr>
<tr>
<td>C<sub>18:1 iso7c 11-methyl</sub></td>
<td>–</td>
<td>–</td>
<td>tr</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>C<sub>19:0 iso5c cyclo</sub></td>
<td>7.7</td>
<td>7.8</td>
<td>3.8</td>
<td>11.2</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>C<sub>19:0 10-methyl</sub></td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>C<sub>20:0 iso6,9c</sub></td>
<td>–</td>
<td>tr</td>
<td>tr</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>ECL 13.957</td>
<td>tr</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Summed features*</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>tr</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>2</td>
<td>9.7</td>
<td>5.6</td>
<td>6.2</td>
<td>7.0</td>
<td>7.1</td>
<td>5.8</td>
</tr>
<tr>
<td>3</td>
<td>3.4</td>
<td>16.2</td>
<td>20.1</td>
<td>14.8</td>
<td>19.1</td>
<td>21.4</td>
</tr>
<tr>
<td>7</td>
<td>0.6</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

*Summed features represent groups of fatty acids that cannot be separated by the Microbial Identification System. Summed feature 1 consisted of iso-C_{15:1} 1 and/or C_{13:0 3-OH}. Summed feature 2 consisted of one or more of C_{12:0} aldehyde, an unknown fatty acid of ECL 10.928, iso-C_{16:1} 3-OH and C_{14:0 3-OH}. Summed feature 3 consisted of C_{18:0 iso7c} and/or iso-C_{15:0 2-OH}. Summed feature 7 consisted of one or more of an unknown fatty acid of ECL 18.846, C_{19:0 iso10c cyclo} and C_{19:0 iso6c}.

The major cellular fatty acids are C_{16:0} and C_{17:0 cyclo}. The DNA G+C content of the type strain is 64.0 mol%.

The type strain, ATSB16^T (=KACC 12757^T =LMG 24779^T), was isolated from rhizosphere soils of sesame in Jung ha-dong, Republic of Korea.

Acknowledgements

We thank Professor Dr Jean P. Euzéby for his assistance with etymology. R.A. and P.I. thank Korea Research Foundation Grant (KRF-2005-F00009) and Brain Korea (BK21). This study was partially supported by the National Academy of Agricultural Science, Rural Development Administration, Republic of Korea. Also, we thank anonymous referees and the editor for their valuable suggestions for improving the manuscript.

References

