Deferrribacter autotrophicus sp. nov., an iron(III)-reducing bacterium from a deep-sea hydrothermal vent

G. B. Slobodkina,1 T. V. Kolganova,2 N. A. Chernyh,1 J. Querellou,3 E. A. Bonch-Osmolovskaya1 and A. I. Slobodkin1

Correspondence
G. B. Slobodkina
gslobodkina@mail.ru

1Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60-letiya Oktyabrya 7/2, 117312 Moscow, Russia
2Bioengineering Center, Russian Academy of Sciences, Prospect 60-letiya Oktyabrya 7/1, 117312 Moscow, Russia
3UMR 6197, Microbiology of Extreme Environments, Ifremer, Centre de Brest, 29280 Plouzane, France

A thermophilic, anaerobic, chemolithoautotrophic bacterium (designated strain SL50T) was isolated from a hydrothermal sample collected at the Mid-Atlantic Ridge from the deepest of the known World ocean hydrothermal fields, Ashadze field (12°58’ 21” N 44°51’ 47” W) at a depth of 4100 m. Cells of strain SL50T were motile, straight to bent rods with one polar flagellum, 0.5–0.6 μm in width and 3.0–3.5 μm in length. The temperature range for growth was 25–75 °C, with an optimum at 60 °C. The pH range for growth was 5.0–7.5, with an optimum at pH 6.5. Growth of strain SL50T was observed at NaCl concentrations ranging from 1.0 to 6.0 % (w/v) with an optimum at 2.5 % (w/v). The generation time under optimal growth conditions for strain SL50T was 60 min. Strain SL50T used molecular hydrogen, acetate, lactate, succinate, pyruvate and complex proteinaceous compounds as electron donors, and Fe(III), Mn(IV), nitrate or elemental sulfur as electron acceptors. The G+C content of the DNA of strain SL50T was 28.7 mol%. 16S rRNA gene sequence analysis revealed that the closest relative of strain SL50T was Deferribacter abyssi JRT (95.5 % similarity). On the basis of its physiological properties and phylogenetic analyses, the isolate is considered to represent a novel species, for which the name Deferrribacter autotrophicus sp. nov. is proposed. The type strain is SL50T (=DSM 21529T=VKPM B-10097T).

Deferrribacter autotrophicus sp. nov. is the first described deep-sea bacterium capable of chemolithoautotrophic growth using molecular hydrogen as an electron donor and ferric iron as electron acceptor and CO2 as the carbon source.

Fe(III)-reducing micro-organisms play an important role in the cycling of carbon and metals in various anaerobic ecosystems including thermal environments. Thermophilic iron reducers have been found in continental hot springs, deep terrestrial subsurface and submarine petroleum reservoirs (Slobodkin, 2005). However, the diversity of this group of prokaryotes in deep-sea hydrothermal ecosystems has been much less studied (Miroshnichenko & Bonch-Osmolovskaya, 2006). At present, thermophilic and hyperthermophilic iron-reducing micro-organisms recovered from deep-sea habitats include three representatives of Archaea (Slobodkin et al., 2001; Kashefi et al., 2002; Reysenbach et al., 2006) and two species of Bacteria, Geothermobacter ehrlichii (Kashefi et al., 2003) and Deferrribacter abyssi (Miroshnichenko et al., 2003).

The order Deferrribacterales represents a deep lineage in the domain Bacteria (Cole et al., 2007). At the time of writing, the family Deferrribacteraceae (Huber & Stetter, 2002) comprised three genera, Deferrribacter, Flexistipes and Geovibrio. Currently, the genus Deferrribacter consists of three species, D. thermophilus (Greene et al., 1997), D. desulfuricans (Takai et al., 2003) and D. abyssi (Miroshnichenko et al., 2003). The type species of the genus, D. thermophilus, was isolated from a high-temperature, seawater-flooded oil reservoir located in the North Sea. The other two micro-organisms were isolated from deep-sea hydrothermal vents. D. desulfuricans was obtained from the Suiyo Seamount hydrothermal chimney and D. abyssi was isolated from the Rainbow hydrothermal vent field of the Mid-Atlantic Ridge. All recognized species
of the genus *Deferribacter* are strictly anaerobic, thermophilic organisms capable of the oxidation of a variety of complex organic compounds and organic acids in the presence of diverse electron acceptors. In this paper, we report the isolation and characterization of a novel species of the genus *Deferribacter* from the deepest of the known World ocean hydrothermal fields.

Strain SL50T was isolated from a sample of a fragment of the hydrothermal structure. The sample was collected in March 2007 during the Serpentine cruise at the Ashadze hydrothermal field (12° 58′ 21″ N 44° 51′ 47″ W) on the Mid-Atlantic Ridge at a depth of 4100 m. For the sample collection, sterilized microbiological boxes filled with sterile freshwater were prepared onboard. Active chimney samples were collected by the ROV Victor. On site, after opening the box lid, the freshwater was replaced by seawater, the chimney fragment was introduced and the lid was closed. All following operations were done onboard under sterile conditions. Boxes with samples were stored at 4 °C. An enrichment culture was initiated by inoculation of 10% (w/v) of the sample into anaerobically prepared, bicarbonate-buffered, sterile (135 °C, 1 h) liquid medium with lactate (1.5 g L−1) as an electron donor and poorly crystalline Fe(III) oxide (90 mM) as an electron acceptor. Medium composition and preparation techniques have been described previously (Slobodkin *et al.*, 1999). Isolate SL50T was purified from the enrichment by serial dilution in the same medium. A pure culture was obtained with sodium acetate (18 mM) as electron donor and potassium nitrate (10 mM) as electron acceptor by using the agar-shake dilution technique with an agar block in the tube (1.5% agar in growth medium) in medium of the following composition [per litre distilled water: 0.34 g KCl, 4.00 g MgCl2·6H2O, 0.25 g NH4Cl, 0.14 g CaCl2·2H2O, 0.14 g K2HPO4, 18.00 g NaCl, 5.00 g NaHCO3, 0.20 g yeast extract (Difco), 0.002 g Fe(NH4)2(SO4)2·6H2O, 7.14 g glucose, 1 ml trace-element solution (Slobodkin *et al.*, 1997), 10 ml vitamin solution (Wolin *et al.*, 1963), 0.001 g resazurin, 0.50 g Na2S·9H2O, gas phase CO2 (100%)]. Physiological studies on substrate and electron acceptor utilization, temperature, pH and salinity ranges for growth, light and electron microscopy, analytical techniques, DNA extraction and determination of the G+C content were performed as described previously (Slobodkin *et al.*, 1999). Growth of strain SL50T with poorly crystalline Fe(III) oxide (14 mM) as an electron acceptor for growth of strain SL50T. Sulfate (14 mM), thiosulfate and fumarate (20 mM each) were not reduced and did not support growth. Poorly crystalline Fe(III) oxide was reduced to black magnetic precipitate with high Fe(II) content. During Mn(IV) reduction, black insoluble MnO2 turned to a light-brown precipitate that almost disappeared after prolonged incubation. No changes in colour or precipitate amount were observed in uninoculated controls with 0.20 g yeast extract L−1 in growth media containing poorly crystalline Fe(III) oxide, Mn(IV) or AQDS during the incubation period at 60 °C. Elemental sulfur was reduced to hydrogen sulfide (Cord-Ruwisch, 1985). Nitrate was reduced to ammonium; NO, NO2 or nitrite were not produced in measurable amounts.

In agar-shake cultures, brown lens-shaped colonies (0.2–0.5 mm in diameter) of strain SL50T appeared after 7–10 days of incubation at 50 °C. Vegetative cells of strain SL50T were straight to bent rods, 0.5–0.6 µm in width and 3.0–3.5 µm in length. The cells occurred singly, in pairs or in short chains, and had one polar flagellum. Spores were not observed. Ultrathin sectioning of cells of strain SL50T revealed that the cell wall had a typical Gram-negative structure.

The temperature range for growth of strain SL50T was 25–75 °C, with an optimum at 60 °C. No growth was detected at 80 °C or at temperatures up to 22 °C after incubation for 3 weeks. The pH range for growth was 5.0–7.5, with an optimum at pH 6.5. No growth was observed at pH 4.5 or 8.0. Growth of strain SL50T was observed at NaCl concentrations ranging from 1.0 to 6.0% (w/v) with an optimum at 2.5% (w/v), but no growth was evident in 0 or 7.0% NaCl (w/v). Yeast extract was not necessary for growth of strain SL50T but strongly stimulated it. Potential electron acceptors were tested with sodium acetate (18 mM) or sodium lactate (1.5 g L−1) as an energy source in the presence of 0.20 g yeast extract L−1. Nitrate (potassium salt, 10 mM), elemental sulfur (10 g L−1), ferric citrate (5 mM), poorly crystalline Fe(III) oxide (90 mM), Mn(IV) supplied as 25 mM of MnO2 and 9,10-anthraquinone-2,6-disulfonate (AQDS; 20 mM) were used as an electron acceptor for growth of strain SL50T. Sulfate (14 mM), thiosulfate and fumarate (20 mM each) were not reduced and did not support growth. Poorly crystalline Fe(III) oxide was reduced to black magnetic precipitate with high Fe(II) content. During Mn(IV) reduction, black insoluble MnO2 turned to a light-brown precipitate that almost disappeared after prolonged incubation. No changes in colour or precipitate amount were observed in uninoculated controls with 0.20 g yeast extract L−1 in growth media containing poorly crystalline Fe(III) oxide, Mn(IV) or AQDS during the incubation period at 60 °C. Elemental sulfur was reduced to hydrogen sulfide (Cord-Ruwisch, 1985). Nitrate was reduced to ammonium; NO, NO2 or nitrite were not produced in measurable amounts.

Strain SL50T was able to grow on peptone and yeast extract (10 g L−1 each), formate, acetate, lactate, pyruvate, fumarate, malate, propionate, succinate, maleinate and maltose (25 mM each) as electron donors and potassium nitrate (10 mM) as electron acceptor in the presence of 0.20 g yeast extract L−1. Maltose was completely oxidized to CO2 without formation of soluble fermentation products. Strain SL50T could grow chemolithoautotrophically in the absence of yeast extract, using molecular hydrogen as an electron donor and poorly crystalline Fe(III) oxide (90 mM) as electron acceptor and CO2 as the carbon source. When Mn(IV) was used as an electron acceptor, H2/CO2 (80/20, v/v) was utilized and supported growth in the presence of yeast extract (0.20 g L−1). With nitrate or sulfur as an electron acceptor molecular hydrogen did not support chemolithoautotrophic growth or growth in the presence of 0.20 g yeast extract L−1. Strain SL50T was not
able to utilize casein, tryptone, starch (10 g l⁻¹ each), methanol, ethanol, n-propanol, iso-propanol, n-butanol, (20 mM each), fructose, xylose, cellobiose, sucrose, L-arabinose (25 mM each), glycerol, butyrate or benzoate (20 mM each) with potassium nitrate (10 mM) as electron acceptor.

The G + C content of the genomic DNA of strain SL50T was 28.7 mol% (T_m). A comparison of 1543 nucleotides of the 16S rRNA gene sequence of strain SL50T with those available in the GenBank database showed that strain SL50T belonged to the genus *Deferribacter* (Fig. 1). Only 16S rRNA gene sequences of type strains of species with validly published names were included in the analyses. The 16S rRNA gene sequence of the novel isolate had the highest similarity with that of *D. abyssi* JR (95.5%). The levels of 16S rRNA gene sequence similarity with other members of the genus *Deferribacter* were 94.3–94.6%. The trees constructed by using maximum-likelihood and maximum-parsimony algorithms displayed the same topology (data not shown).

The novel isolate described in this report represents a micro-organism capable of reduction of Fe(III) and Mn(IV) as well as nitrate and sulfur, which are also common substances in deep-sea hydrothermal environments. Strain SL50T shared many phenotypic features with recognized representatives of the genus *Deferribacter* (Table 1). Species of the genus *Deferribacter*, with the exception of *D. thermophilus*, were isolated from deep-sea hydrothermal vents. According to the electron microscopic analysis all of them have a Gram-negative type of cell-wall structure. Cells of all *Deferribacter* species are rod-shaped with a polar flagellum and grow under anaerobic conditions by the oxidation of a variety of complex organic compounds and organic acids in the presence of diverse electron acceptors, but not by fermentation. However, strain SL50T differed from all representatives of the genus *Deferribacter* by its ability to grow chemolithoautotrophically, utilizing hydrogen as an electron donor, CO₂ as a carbon source and poorly crystalline Fe(III) oxide as an electron acceptor. Strain SL50T had the widest range of utilized electron acceptors of the recognized species of this genus. Unlike the type species of the genus, *D. thermophilus*, strain SL50T was able to reduce sulfur. The ability of strain SL50T to reduce both Fe(III) and Mn(IV) differentiatated it from *D. abyssi*, which cannot utilize Mn(IV) and *D. desulfuricans*, which is unable to use either of these metals as electron acceptors. In contrast to the type species of the genus and the phylogenetically closest species, *D. abyssi*, strain SL50T could grow on formate and propionate as substrates. Other significant characteristics that differentiate strain SL50T from all recognized representatives of the genus are nitrate reduction to ammonium, but not to nitrite, and the ability to use disaccharide (maltose) as an electron donor with nitrate as electron acceptor. On the basis of the phylogenetic, phenotypic and physiological properties that clearly differentiate strain SL50T from recognized species of the genus *Deferribacter*, we propose that strain SL50T represents the type strain of a novel species, with the name *Deferribacter autotrophicus* sp. nov.

Description of *Deferribacter autotrophicus* sp. nov.

Cells are motile by means of one polar flagellum, straight to bent rods, 0.5–0.6 μm in width and 3.0–3.5 μm in length; spores were not observed. Cells form brown lens-shaped colonies (0.2–0.5 mm in diameter) in agar-shake cultures. Temperature range for growth is 25–75 °C, with an optimum at 60 °C. pH range for growth is 5.0–7.5, with an optimum of pH 6.5. Growth occurs at NaCl concentrations ranging from 1.0 to 6.0 % (w/v), with an optimum at 2.5 % (w/v). Anaerobic. Capable of chemolithoautotrophic growth using molecular hydrogen as an electron donor and ferric iron as electron acceptor and CO₂ as the carbon source. Anaerobically oxidizes peptone, yeast extract (10 g l⁻¹ each), formate, acetate, lactate, pyruvate, fumarate, malate, propionate, succinate, maleinate and maltose with

Fig. 1. Phylogenetic tree based on 16S rRNA gene sequences indicating the position of strain SL50T within representative members of the order Deferribacterales. The 16S rRNA gene sequence of *Clostridium butyricum* was included as an outgroup. GenBank accession numbers are given in parentheses. Bootstrap percentages (based on 500 replications) greater than 70 % are indicated at nodes. Bar, 5 substitutions per 100 nt.
sulfur, nitrate, Mn(IV) or Fe(III) as electron acceptor in the presence of 0.20 g yeast extract l\(^{-1}\). Casein, tryptone, starch, methanol, ethanol, n-propanol, iso-propanol, n-butanol, fructose, xylose, cellobiose, sucrose, \(L\)-arabinose, glycerol, butyrate and benzoate are not utilized with nitrate as electron acceptor. Does not reduce fumarate, sulfate, thiosulfate or oxygen (20 %, v/v in the gas phase). The G + C content of the DNA of the type strain is 28.7 mol% (\(T_m\)).

The type strain, SL50\(^T\) (=DSM 21529\(^T\) = VKPM B-10097\(^T\)), was isolated from a hydrothermal vent field of the Mid-Atlantic Ridge.

Acknowledgements

This work was supported by grant 06-04-48684-a from the Russian Foundation for Basic Research and by Federal programs ‘Molecular and cell biology’ and ‘The origin and evolution of the biosphere’ of the Russian Academy of Sciences. We acknowledge the officers and crew of the ‘R/V Pourquoi Pas?’ and the ROV Victor operation team. We are also grateful to Dr Yves Fouquet, Chief Scientist of the Serpentine cruise, for his very effective contribution to the success of Ashadze hydrothermal field exploration.

References

