Arcanobacterium abortisuis sp. nov., isolated from a placenta of a sow following an abortion

Ryozo Azuma,1 Satoshi Murakami,2 Akihiro Ogawa,3 Yoshikiyo Okada,4 Shigeru Miyazaki5 and Takashi Makino6

Correspondence
Satoshi Murakami
s1muraka@nodai.ac.jp

12-7-33, Higashi-tokura, Kokubunji, Tokyo 185-0002, Japan
2Laboratory of Animal Health, Department of Animal Science, Tokyo University of Agriculture, 1737 Funako, Atsugi, Kanagawa 243-0034, Japan
3Chuoh Animal Health and Hygiene Service Center of Chiba Prefecture, 497 Iwatomi, Sakura, Chiba 243-0034, Japan
4Internal Medicine, National Defense Medical College, Saitama 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
5Safety Research Team, National Institute of Animal Health, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
6Yakult Central Institute for Microbiological Research, 1796 Yaho, Kunitachi, Tokyo 186-8650, Japan

A Gram-positive, short diphtheroid-shaped organism was isolated from a sow’s placenta of an abortion. This novel isolate, strain MurakamiT, was examined physiologically, chemotaxonomically and phylogenetically. Cells had an irregular V-shaped or palisade arrangement. Colonies appeared translucent on TMVL agar. Cells were strictly anaerobic, negative for catalase and gelatin decomposition and positive for nitrate reduction and soluble starch hydrolysis. Fourteen sugars including glucose were utilized as carbon sources for growth, but 15 sugars including arabinose were not. a-Galactosidase, b-galactosidase, a-glucosidase and leucine arylamidase were produced, but b-glucosidase was not. Fermentation products were lactic, succinic and acetic acids. Sugars of whole cells consisted of rhamnose and ribose. The amino-acid composition of the peptidoglycan was glutamic acid, alanine and lysine in the molar ratio of 1 : 2 : 1. The main fatty acid components of whole cells were C14 : 0, C16 : 0, C16 : 1v7 and C18 : 1v9. The bacterial menaquinone was MK-10(H4). The polar lipids were phosphatidylethanolamine and two unknown phosphatidylinositol mannosides. The G+C content of the genomic DNA of strain MurakamiT was 63.8 mol%. Phylogenetic analysis of 16S rRNA gene sequences from strain MurakamiT and other members of the genus Arcanobacterium supported the phenotypic findings that strain MurakamiT represents a novel species, for which the name Arcanobacterium abortisuis sp. nov. is proposed. The type strain is MurakamiT (= ATCC BAA-1522T = DSM 19515T = JCM 14813T).

During June and November 1999, intermittent abortions were observed at a pig farm in Chiba Prefecture, Japan, on which are raised approximately 600 sows. One case was subjected to pathological and bacteriological examinations, which revealed suppurrative bronchopneumonia and suppressive placentitis. The lesions in three fetuses and the placenta from an abortion were found to contain a number of Gram-positive filamentous and/or rod-shaped bacteria. The bacteria were immunolabelled with a primary antiserum against this micro-organism. Samples were cultured on TMVL agar slants at 37 °C under flushing with 5% CO2 (Azuma & Suto, 1970; Azuma et al., 1979; Azuma & Ito, 1987) and a novel Actinomyces-like micro-organism, strain MurakamiT, was isolated from a sample from the placenta.

Physiological examinations (Azuma & Suto, 1970; Cowan, 1974) were conducted on cultures of strain MurakamiT prepared on TMVL medium, in which Tween 80 is added to MVL medium (Cote, 1992; Azuma et al., 1979). Cells of strain MurakamiT were short and diphtheroid-shaped and mainly had an irregular V-shape or palisade arrangement. Colonies were translucent and smooth with a diameter of about 2 mm on TMVL agar. The isolate was strictly anaerobic and negative for catalase activity and indole.
production, but positive for nitrate reduction. Cells were negative for gelatin decomposition (Kohn, 1953) and positive for soluble starch hydrolysis. The strain utilized fructose, galactose, glucose, cellobiose, lactose, maltose, sucrose, trehalose, melizitose, raffinose, inulin, soluble starch, adonitol and glycerol as sole carbon sources for growth. It did not utilize arabinose, ribose, xylose, rhamnose, mannose, sorbose, melibiose, amygdalin, arbutin, salicin, dulcitol, erythritol, mannitol, sorbitol or inositol. With the Rapid ID 32A system (bioMérieux), the strain was positive for α-galactosidase, β-galactosidase, α-glucosidase and leucine arylamidase production, but negative for urease, β-glucosidase and pyrog glutamic acid arylamidase.

Fermentation products were examined (Tabaru et al., 1988). After deproteinization of the sample, it was eluted with 3 mM HClO₄ using a HPLC equipped with a stainless-steel column packed with cation-exchange resin (RSKC-8119; Showa denko). Separated organic acids were detected with bromothymol blue solution in 15 mM (RSKC-8119; Showa denko). Separated organic acids were detected with bromothymol blue solution in 15 mM Na₂HPO₄. Succinic acid (24.7 mM), lactic acid (38.4 mM) and acetic acid (19.8 mM) were shown to be present in strain MurakamiT. With the Rapid ID 32A system (bioMérieux), the strain was positive for soluble starch hydrolysis. The strain utilized salicin, dulcitol, erythritol, mannitol, sorbitol or inositol. About 50 mg vacuum-dried cells, obtained from 250 ml TMVLG culture, was mixed with a chloroform/methanol solution (1 : 1 : 1, by vol.) and collected again after centrifugation. Purified menaquinones were obtained by dissolving the scraped silica powders in 5 ml acetone, filtering through a cartridge filter, concentrating in a rotary evaporator at 35 °C and dissolved with 0.3 ml acetone. The sample was applied on to a silica-gel TLC plate (Kieselgel 60 F₂₅₄; Merck). A solution of petroleum ether/diethyl ether (85 : 15, v/v) was used as the developing solvent. After development, the plate was dried. Menaquinones were detected with UV (254 nm) and removed from the plate by scraping. Purified menaquinones were obtained by dissolving the scraped silica powders in 5 ml acetone, filtering through a cartridge filter, concentrating in a rotary evaporator at 35 °C and dissolving in 0.3 ml acetone. For liquid chromatography mass spectrometry, an API 3200 mass spectrometer (Applied Biosystems) was used in the positive-ion mode with atmospheric pressure chemical ionization. Separation of the menaquinone fraction was carried out with an L-column (Chemicals Evaluation and Research Institute, Japan). The major menaquinone component of strain MurakamiT was MK-10(H₄).

The chemotaxonomic properties of strain MurakamiT were determined using methods accepted for use with actinomycetes (Slack & Gerencser, 1975). The whole-cell sugar components were determined according to Stanek & Roberts (1974). After growth in TMVLG (TMVL plus 1 % glucose instead of 0.2 %), pelleted cells were obtained from 50 ml culture. They were resuspended with 3 ml 2 M H₂SO₄ and adjusted to pH 5.0–5.5 with saturated Ba(OH)₂. After centrifugation, the culture supernatant was evaporated to about 0.3 ml. The sample was applied to an Avicel TLC plate (Funakoshi Co.) and mixtures of standards were applied to the same plate. The chromatogram was developed using ethylene acetate/pyridine/acetic acid/water (5 : 5 : 1 : 1, by vol.). After drying, the spots were visualized by spraying with acid aniline phthalate and heating at 105 °C for 5 min. Whole-cell sugars of MurakamiT consisted of rhamnose and ribose.

The amino-acid composition of the cell-wall peptidoglycan was determined for strain MurakamiT grown in TMVLG. Pelleted cells from 50 ml culture were treated with 10 % trichloroacetic acid at 80 °C for 30 min. After centrifugation, the sediment was treated with actinase E (KA-002; Kaken-pharma) in 10 ml 0.1 M phosphate buffer (pH 7.2) at 37 °C for 6 h. The sample was purified with three washings, using distilled water followed by centrifugation, and then hydrolysed with 6 M HCl at 110 °C for 24 h. After hydrolysis, the HCl was removed under reduced pressure and the residue was dissolved in sodium citrate buffer (pH 3.25). Analysis was performed using an amino-acid analyser (JLC-300; JASCO). The amino-acid composition was determined as glutamic acid, alanine and lysine in the molar ratio of 1 : 2 : 1.

The fatty-acid composition of whole cells was determined according to Ikemoto et al. (1978). Pelleted cells from 50 ml TMVLG culture were vacuum-dried and underwent methanolation with 2 ml of 3 % HCl/methanol solution at 100 °C for 3 h. The sample was extracted three times with 1 ml petroleum ether. The ether layer was harvested, washed with 1 ml distilled water, dehydrated with Na₂SO₄, concentrated under a stream of N₂ gas and dissolved in 1 ml acetone. The fatty acids were analysed with a gas chromatograph (Agilent 6890; Hewlett-Packard) equipped with a flame-ionization detector and a fused silica, open tubular column coated with polyethylene glycol-HT (GL Sciences), which has been calibrated with mixtures of standards containing C₁₄:₀, C₁₆:₀, C₁₈:₀, C₁₆:₁, C₁₈:₁, C₁₆:₀, C₁₈:₀, C₁₆:₀, C₁₈:₀, C₁₆:₀, C₁₈:₀, C₁₆:₀, C₁₈:₀. Standards were applied to the same plate. The chromatogram was developed using a chloroform/methanol/distilled water (50 : 100: 40, by vol.). The sample was applied to a silica-gel TLC plate (Kieselgel 60 F₂₅₄; Merck). A solution of petroleum ether/diethyl ether (85 : 15, v/v) was used as the developing solvent. After development, the plate was dried. Menaquinones were detected with UV (254 nm) and removed from the plate by scraping. Purified menaquinones were obtained by dissolving the scraped silica powders in 5 ml acetone, filtering through a cartridge filter, concentrating in a rotary evaporator at 35 °C and dissolving in 0.3 ml acetone. For liquid chromatography mass spectrometry, an API 3200 mass spectrometer (Applied Biosystems) was used in the positive-ion mode with atmospheric pressure chemical ionization. Separation of the menaquinone fraction was carried out with an L-column (Chemicals Evaluation and Research Institute, Japan). The major menaquinone component of strain MurakamiT was MK-10(H₄).

Polar lipid extraction and analysis were performed according to Kudo (2001) with cells prepared in TMVLG medium. Harvested cells (0.5 g) were washed by shaking for 15 min with 2 ml methanol/0.3 % NaCl solution (100 : 10) and 2 ml petroleum ether in a screw-capped test tube. After centrifugation at 3000 r.p.m. for 10 min, the lower layer was collected, washed a second time with 1 ml petroleum ether and collected again after centrifugation. The lower layer was then boiled at 100 °C for 5 min and the polar lipids were extracted by shaking for 1 h with 2.3 ml chloroform/methanol/distilled water (90 : 100 : 30, by vol.). After centrifugation, the upper layer was retained and extraction was performed twice more on the lower layer by shaking for 30 min with 0.75 ml chloroform/methanol/distilled water (50 : 100 : 40, by vol.). The upper layers from each extraction were combined and washed by shaking with 2.6 ml chloroform/distilled water (1 : 1, v/v). After centrifugation, the lower layer was dried by flushing
with N₂ and dissolved in 60 µl chloroform/methanol (2:1). TLC was performed with 5 µl sample on a silica-gel TLC plate (10 x 10 cm Kieselgel 60 F₂₅₄). The solvent system was chloroform/methanol/water (65 : 25 : 4, by vol.) for the first dimension and chloroform/acetic acid/methanol/water (80 : 15 : 12 : 4, by vol.) for the second dimension. Another plate was treated with standards diphosphatidylglycerol, phosphatidylethanolamine, (phosphatidylglycerol, phosphatidylinositol and phosphatidylylcholine) (C5646, P7693, P0514, P5766 and P3644, respectively; Sigma). TLC was performed in triplicate. Plates were sprayed with the reagents anisaldehyde (Kudo, 2001), α-naphthol and ninhydrin (N0094; Tokyo Kasei Co). Extracts from strain Murakami T exhibited the presence of phosphatidylethanolamine and two unknown phosphatidylinositol mannosides.

The DNA G+C content was determined according to the methods of Ezaki et al. (1990). Purified DNA (10 µg) was dissolved in 40 µl distilled water and denatured by boiling for 10 min. Digestion was performed with 40 µl P1 nuclease (5 U ml⁻¹; Takara) at 50 °C for 1 h followed by the addition of 40 µl alkaline phosphatase (2.4 U ml⁻¹; P-4252; Sigma-Aldrich) and further incubation at 37 °C for 1 h. A 10 µl aliquot was injected into an HPLC (LC-10 system; Shimadzu) connected with a Union Uk-18 column (Imtakt). The G+C content of strain Murakami T was determined to be 63.8 mol %.

Genomic DNA was extracted using a yeast and Gram-positive bacteria DNA purification kit (Gentra Systems) following the instructions of the manufacturer. The extracted DNA was used for in vitro amplification of the 16S rRNA gene by PCR (Saiki et al., 1988) with 16S rRNA gene-specific primers 5'-AGTTGATCCTGGCTC-3' (sense positions 10–25 in the Escherichia coli numbering system; Brosius et al., 1978) and 5'-AAGGAGGTGATCCGCC-3' (antisense positions 1541–1525) and a Takara PCR amplification kit (Takara Syuzo). Amplified products were sequenced using an ABI Prism 3100 automated sequencer (Applied Biosystems) following the manufacturer's instructions, by double-strand sequencing with the primer walking technique. The 16S rRNA sequence of strain Murakami T was aligned with those of other Arcanobacterium species that have been described to date and 16S rRNA gene similarities were determined by using the CLUSTAL W program (Higgins & Sharp, 1988) supported by DDBJ (http://www.ddbj.nig.ac.jp). A phylogenetic tree was constructed with the neighbour-joining method (Saitou & Nei, 1987). Gaps and regions of ambiguous sequence alignment were excluded from subsequent analysis. A bootstrap confidence analysis was performed with 1000 replicates to determine the reliability of the tree topology (Felsenstein, 1985). The phylogenetic tree of 16S rRNA gene sequences is shown in Fig. 1.

The phylogenetic analysis and the pattern of enzyme activities show that strain Murakami T is related to the genus Arcanobacterium. It is interesting to note that the Arcanobacterium species that have been described to date are facultative anaerobes, whereas strain Murakami T is strictly anaerobic. There are quantitative differences in the cellular fatty acid patterns from strain Murakami T and other Arcanobacterium species: strain Murakami T contains a rather higher percentage of C₁₈ : 1 (47.3 %) and a smaller percentage of C₁₈ : 0 (3.8 %), compared with 20.9–37.0 and 12.3–24.7 %, respectively, in other species (Lehnen et al., 2006). However, strain Murakami T contains the same menaquinone component, MK-10(H₄), as that reported for Arcanobacterium species (Lehnen et al., 2006). The polar lipid pattern appears to belong to phospholipid type II (Lechevalier & Lechevalier, 1980).

Chromatographic and phylogenetic analyses have demonstrated that strain Murakami T is a member of a novel species, for which the name Arcanobacterium abortisuis sp. nov. is proposed.

Description of Arcanobacterium abortisuis sp. nov.

Arcanobacterium abortisuis (a.bor.ti.su′is. L. n. abortus -us an abortion; L. n. sus suis a pig; N.L. gen. n. abortisuis from an abortion of a pig).

Cells are short and diphtheroid-shaped and are arranged in either V-shapes or palisades. Colonies have a translucent smooth surface and are strictly anaerobic. Catalase- and indole-negative. Reduces nitrate. Soluble starch is hydrolysed but gelatin is not. Utilizes fructose, galactose, glucose, cellobiose, lactose, maltose, sucrose, trehalose, melizitose, raffinose, inulin, soluble starch, adonitol and glycerol. Does not utilize arabinose, ribose, xylose, rhamnose, mannose, sorbose, melibiose, amygdalin, arbutin, salicin, dulcitol, erythritol, mannitol, sorbitol or inositol. Produces α-galactosidase, β-galactosidase, α-glucosidase and leucine ary lamidase but not urease, β-glucosidase or pyroglutamic acid arylami-
dase. Fermentation products are lactic, succinic and acetic acids. Whole-cell sugars include rhamnose and ribose. Cell-wall peptidoglycan contains glutamic acid, alanine and lysine in the molar ratio of 1:2:1. Major fatty acids are C14:0, C16:1, C16:0 and C18:1. The major menaquinone is MK-10(H4). Polar lipids are phosphatidylethanolamine and two unknown phosphatidylinositol mannosides. The G+C content of the type strain is 63.8 mol %.

The type strain is MurakamiT (=ATCC BAA-1522T =DSM 19515T =JCM 14813T), isolated from a sow’s placenta after an abortion.

Acknowledgements

The authors express sincere gratitude to Mr Katuyuki Manabe of the Yakult Institute for his technical assistance in microbiological examination.

References

