Treponema pedis sp. nov., a spirochaete isolated from bovine digital dermatitis lesions

Nicholas J. Evans,1,2 Jennifer M. Brown,1 Ibrahim Demirkan,1† Richard D. Murray,2 Richard J. Birtles,1 C. Anthony Hart3 and Stuart D. Carter1,2

1Department of Veterinary Pathology, Faculty of Veterinary Science, University of Liverpool, Liverpool L69 3BX, UK
2Department of Veterinary Clinical Science, Faculty of Veterinary Science, University of Liverpool, Leahurst, Neston CH64 7TE, UK
3Department of Medical Microbiology, Genitourinary Medicine, Faculty of Medicine, Duncan Building, University of Liverpool, Liverpool L69 3GA, UK

Bovine digital dermatitis (BDD) is a debilitating infection that is being increasingly recognized in livestock worldwide. Several treponeme phylotypes have been identified in BDD lesions, although only a single BDD-associated treponeme taxon (Treponema brennaborense) has been proposed thus far. In a previous study, we observed that four BDD-associated spirochaete isolates formed a distinct phylogenetic cluster on the basis of 16S rRNA gene sequence analysis and shared less than 97% sequence similarity with recognized treponeme species. Further characterization of these isolates on the basis of growth characteristics, flaB2 gene sequences, enzyme profiles and cell morphology confirmed that they formed a coherent taxonomic group displaying marked genotypic and phenotypic differences with respect to recognized treponeme species. The four novel isolates displayed a novel 3:6:3 flagellar pattern rather than the 2:4:2 pattern shown by their closest relatives and exhibited esterase C4, esterase lipase C8, trypsin and chymotrypsin enzyme activities. Therefore these four new isolates represent a novel species of the genus Treponema, for which the name Treponema pedis sp. nov. is proposed. The type strain is T3552BT (=DSM 18691T =NCTC 13403T).

Treponemes are typically found in the oral cavity, digestive tract and genital areas of humans and animals (Smibert, 1984). Several treponeme taxa are associated with disease and there is an unequivocal aetiology for certain treponeme infections such as human syphilis and yaws, which are caused by Treponema pallidum subsp. pallidum and T. pallidum subsp. pertenue, respectively (Radolf et al., 2006). In contrast, other treponeme infections, such as human periodontal infections and bovine digital dermatitis (BDD), appear to have a more complicated aetiology involving co-infection by several different treponemes (Choi et al., 1997; Dewhirst et al., 2000). Cloning and sequencing of 16S rRNA genes has been used to identify the presence of a diverse range of treponemes in polytreponemally infected tissue, but their highly fastidious nature has, for the most part, precluded any further characterization of these organisms. Although some progress has been made in elucidating the taxonomy of treponemes associated with human periodontal infections, only a single BDD-associated treponeme taxon, Treponema brennaborense (Schrank et al., 1999), has been proposed thus far. This is despite at least five treponeme phylotypes having been identified in BDD lesions (Choi et al., 1997) and several isolation reports of BDD treponemes that correspond to three of the five groups (Evans et al., 2008; Trott et al., 2003; Walker et al., 1995). Furthermore, T. brennaborense was not identified in any BDD lesions during a recent epidemiological study, suggesting that this species may not be as important in disease pathogenesis as initially perceived (Nordhoff et al., 2008).

Abbreviations: BDD, bovine digital dermatitis; FCS, fetal calf serum.

The GenBank/EMBL/DDBJ accession numbers for the 16S rRNA gene sequences of strains T3552BT, T18B, T354A and G819CB are EF061268, EF061270, EF061267 and EF061269, respectively. The accession numbers for the flaB2 gene sequences of strains T3552BT, T18B, T354A and G819CB are EF061284, EU754824, EF061283 and EU754823, respectively.

The growth characteristics of strain T3552BT on FAA plates supplemented with defibrinated sheep blood and FCS are shown in a supplementary figure available with the online version of this paper.

†Present address: Department of Surgery, Faculty of Veterinary Medicine, Afyon Kocatepe University, 03200, Afyonkarahisar, Turkey.
In a recent survey of spirochaetes present in BDD lesions in the UK, we obtained 23 isolates, which we delineated into three phylogroups on the basis of 16S rRNA gene sequence comparisons (Evans et al., 2008). The 16S rRNA gene sequences of the three phylogroups clustered closely with three of the five spirochaetal phylogroup 16S rRNA gene fragments previously described as being present in BDD lesions and reported as being found within the genus Treponema (Choi et al., 1997). As the three phylogroups we isolated appeared to be genotypically and phenotypically distinctive and had been collected from a novel niche, we wanted to clarify their taxonomic status further. However, as two of these three phylogroups shared almost identical 16S rRNA gene sequences with established species of the genus Treponema, namely Treponema medium and ‘Treponema phagedenis’, DNA–DNA hybridization and/or multilocus sequence-analysis studies were necessary for the precise determination of their taxonomic relationship with these species. The third phylogroup shared less than 97% 16S rRNA gene sequence similarity with recognized Treponema species. In the present study, these data have been combined with novel genotypic and phenotypic characterizations to support the proposal of this phylogroup as a novel species of the genus Treponema.

The isolation of the BDD-associated spirochaetes studied here has been described previously (Evans et al., 2008). Biopsies were taken from BDD lesions in Holstein-Friesian cows in the UK. Four spirochaete strains (T3552BT, T354A, G819CB and T18B) that comprised a distinct phylogroup (Evans et al., 2008) were isolated from different cows on different farms across the UK and were initially grown in oral treponeme enrichment broth (OTEB; Anaerobe Systems) supplemented with 10% (v/v) fetal calf serum (FCS). Only poor growth was observed in the absence of FCS or if 10% (v/v) rabbit serum was used as an alternative to FCS. This differed from the growth shown by the other two groups of BDD-associated spirochaetes isolated in the aforementioned study: T. medium-like isolates preferred to grow in rabbit serum and ‘T. phagedenis’-like isolates required reinoculation every 7 days, as opposed to the 4 days required for the spirochaetes described in this work. The isolated treponemes could be stored at −80°C in growth medium containing 10% (v/v) glycerol. Under phase-contrast microscopy, cells in liquid media could be identified as highly motile, showing both rotational and translational movement as well as jerky flexing. Spherical bodies could be observed in older cultures (from stationary phase onwards) and the spirochaete cells were typically found sedimenting towards the bottom of the tube.

The four spirochaete isolates were inoculated onto fastidious anaerobe agar (FAA) plates (LabM) supplemented with 5% (v/v) defibrinated sheep blood and 10% (v/v) FCS and incubated in an anaerobic cabinet (N\textsubscript{2}/H\textsubscript{2}/CO\textsubscript{2}, 85 : 10 : 5, 36°C, Fred Baker). All four isolates had the same growth characteristics; after 4 days incubation, the FAA plates yielded translucent, circular, convex single colonies ~0.2 mm in diameter and the colonies achieved a final size of ~0.5–2.0 mm after 11 days (see Supplementary Fig. S1a, available IJSEM Online). Distinct β-haemolysis appeared underneath some colonies after 3 weeks, whilst irregularly shaped projections with a characteristic metallic sheen had grown from many colonies (see Supplementary Figs S1b, c, available in IJSEM Online). Several of the β-haemolysis zones were penetrative, being visible from the underside of the plate. At 4 weeks, the novel protrusions had covered the entire plate, demonstrating the high degree of motility of these micro-organisms. Similar growth was observed on FAA plates containing 10% (v/v) rabbit serum as an alternative serum supplement, whilst inoculation onto FAA plates not containing serum resulted in no subsequent growth, suggesting that these treponemes were serum-dependent in vitro.

Genomic DNA preparation, subsequent PCR amplification of the 16S rRNA and flagellar subunit FlaB2 (flaB2) genes and sequencing of the amplification products for each of the four isolates were performed as described previously (Evans et al., 2008). For sequence comparison, approximately 1320 bp of the 16S rRNA gene sequences for each isolate were aligned against relevant recognized species of the genus Treponema by using CLUSTAL W (Thompson et al., 1994). The four isolates shared at least 99.7% 16S rRNA gene sequence similarity with one another but showed less than 97% similarity with respect to all of the recognized species of the genus Treponema (96.6% with Treponema putidum ATCC 700334T and 95.7% with Treponema denticola ATCC 35405T) and only 86% with the previously described BDD treponeme, T. brennaborense DSM 12168T. Phylogeny was inferred from this alignment by using the neighbour-joining method with nucleotide substitution rates calculated according to the Kimura two-parameter model implemented in MEGA2 (Kumar et al., 2001). The robustness of the proposed branching order was tested using bootstrapping (1000 iterations). Phylogenetic reconstruction (Fig. 1) revealed that the four isolates separated into a distinct and well-supported phylogroup that diverged from an ancestor of T. putidum/T. denticola before these two species diverged from one another. The evolutionary distance between the novel phylogroup and T. putidum or T. denticola was akin to that observed between sister species throughout the genus Treponema.

Sequences (510 bp) for the flaB2 locus of the four isolates studied were obtained and compared with one another and with flaB2 sequences available for other species of the genus Treponema. The sequences of the four novel isolates (T3552BT, T354A, G819CB and T18B) shared a minimum of 97.8% similarity with one another but showed less than 77% similarity with the flaB2 sequences of the type strains of other Treponema species. Phylogenetic analysis inferred from the alignment of flaB2 sequences indicated that strains T3552BT, T354A, G819CB and T18B clustered together on a deep-rooted, well-supported branch within the evolutionary radius of the Treponema genus (Fig. 2). In agreement with analyses based on 16S rRNA gene sequences, flaB2-sequence-based analyses showed that the
four novel isolates were specifically related to, but clearly distinct from, *T. denticola*.

The enzyme activities of each of the four novel isolates were determined using the API ZYM system (bioMérieux) according to the manufacturer’s instructions, with each test being performed in triplicate. The patterns of reactivity were identical for the four isolates, with positive results for esterase C4, esterase lipase C8, trypsin and chymotrypsin activities. The enzyme profiles of the four isolates had a specific pattern (Table 1) that differed from that of recognized species of the genus *Treponema*. Complete enzyme profiles are listed in the species description.

The morphologies of the micro-organisms were examined using transmission electron microscopy as described previously (Demirkan et al., 2006) except that the spirochaetes were taken directly from liquid cultures. The four novel isolates shared common morphological characteristics: cells were 5–16 μm long and 0.2–0.3 μm wide, had 4–10 windings and each possessed six periplasmic flagella (three originating at each end and overlapping in the central region of the cell) (Fig. 3). This novel 3:6:3 flagellation pattern has been described previously as being a characteristic of *Treponema amylovorum*, a saccharolytic, medium-sized treponeme isolated from a periodontal lesion (Wyss et al., 1997); this species is genetically distant from the isolates under study, sharing less than 83% 16S rRNA gene sequence similarity.

The results presented here clearly indicate that the four novel isolates form a coherent taxonomic group with almost-identical 16S rRNA gene sequences, very similar flaB2 gene sequences and identical enzyme activities, growth characteristics and cell morphology. Comparative 16S rRNA and flaB2 gene sequence analysis clearly places these isolates within the genus *Treponema*, sharing ancestry with *T. putidum* and *T. denticola*. However, phylogenetic reconstructions indicate that the novel isolates form a specific evolutionary cluster that demonstrates marked divergence from these two recognized taxa. This divergence is reflected in phenotypic variation, as the novel isolates demonstrate a unique enzyme profile and an unusual (3:6:3) flagellation pattern that differs from that of their
Table 1. Enzyme activities as determined using the API ZYM system

<table>
<thead>
<tr>
<th>Enzyme activities</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-Acetyl-β-glucosaminidase</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Acid phosphatase</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Alkaline phosphatase</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Chymotrypsin</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Esterase C4</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Esterase lipase C8</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>β-Fucosidase</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>x-Galactosidase</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>β-Galactosidase</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>β-Glucosidase</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>β-Glucuronidase</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Leucine arylamidase</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Naphthol phosphohydrolase</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Trypsin</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Strains: 1, *T. brennaborense* DSM 12168T; 2, *T. amylovorum* HA2P7; 3, *T. medium* ATCC 700293T; 4, ‘T. vincenti’ ATCC 35580; 5, *T. denticola* ATCC 35405T; 6, *T. putidum* ATCC 700334T; 7, *T. pedis* sp. nov. (data for strains T3552B1, T354A, G819CB and T18B). Data for strains 1, 2 and 4 are from Schrank et al., 1999; data for strains 5 and 6 are from Wyss et al., 2004 and the remaining data are from this study. All strains give negative results for β-glucuronidase, α-mannosidase, valine arylamidase, cystine arylamidase and lipase C14. ++, Positive; −, negative.

Description of Treponema pedis sp. nov.

T. pedis (pe’dis. L. gen. n. pedis of the foot, referring to the source of isolation).

Gram-negative, anaerobic, motile, helically coiled, medium-sized treponemes. Cells are approximately 5–16 μm long and 0.2–0.3 μm wide, with 4–10 windings. Cells each have six periplasmic flagella: three originate at each cell end and overlap in the central region of the cell (3:6:3 flagellation pattern). Cells require 4 days anaerobic incubation at 36 °C to reach stationary phase in OTEB containing 10% (v/v) FCS. In culture, cells exhibit rotational and translational movement as well as jerky flexing. When streaked on FAA plates containing 10% (v/v) FCS and 5% (v/v) defibrinated sheep blood, colonies are ~0.5–2.0 mm in diameter after 11 days. After 3 weeks incubation, distinct, penetrative β-haemolysis appears underneath colonies and irregularly shaped colonies with a metallic sheen grow from the original colonies. Growth is serum-dependent and optimal growth is achieved in OTEB using serum from a specific species (FCS). Cells can be stored at −80 °C in growth medium supplemented with 10% (v/v) glycerol. API ZYM analysis produces positive reactions for esterase C4, esterase lipase C8, trypsin and a region of the 16S rRNA gene of *T. pedis* sp. nov., implicated *T. denticola*-like spirochaetes as being most frequently present in this disease (Choi et al., 1997). Furthermore, *Treponema* sp. 1-9185MED, isolated from BDD lesions in the USA (Walker et al., 1995), shares 99.0% 16S rRNA gene sequence similarity to the strains of *T. pedis* sp. nov. This possibly worldwide (UK, USA and Germany) presence of *T. pedis* sp. nov. suggests that this micro-organism might have a significant aetiological role in BDD. Further investigations are required to identify the pathogenic role that this novel species might have in BDD, while further taxonomic studies of BDD-associated spirochaetes are required to enable a better understanding of this significant disease.

Fig. 3. Electron micrographs of negatively stained cells of the novel spirochaete strain T3552B1. The 3:6:3 flagellar pattern is shown: (a) the whole cell; (b) one end of the cell, containing three flagella attached subterminally; (c) six overlapping flagella lying across the centre of the cell. Flagella are indicated by arrows. Bars, 0.5 μm.
chymotrypsin and gives negative reactions for alkaline phosphatase, lipase C14, leucine arylamidase, valine arylamidase, cystine arylamidase, acid phosphatase, naphthol phosphohydrolase, α-galactosidase, β-galactosidase, β-glucuronidase, α-glucosidase, β-glucosidase, N-acetyl-β-glucosaminidase, α-mannosidase and α-fucosidase.

The type strain, T3552BT (=DSM 18691T=NCTC 13403T), was isolated from a BDD lesion.

Acknowledgements

This work was funded by the UK Department for Environment, Food and Rural Affairs (animal welfare grant AW1010) and the UK Biotechnology and Biological Sciences Research Council (research grant BBE0189201).

References

