Kineococcus xinjiangensis sp. nov., isolated from desert sand

Ming Liu,† Fang Peng,† Yang Wang, Kundi Zhang, Gong Chen and Chengxiang Fang

College of Life Sciences, Wuhan University, Wuhan 430072, PR China

A brown–orange-pigmented, non-spore-forming, coccus-shaped actinomycete, designated S2-20T, was isolated from desert sand from Xinjiang Province in China. The isolate stains Gram-positive, is motile and produces a brownish diffusible pigment. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain S2-20T was phylogenetically affiliated to the genus Kineococcus, and the sequence similarity to the type strains of Kineococcus species was less than 96 %, making it clear that strain S2-20T represents a species that is separate from recognized Kineococcus species. Its major fatty acid was anteiso-C15 : 0. The major menaquinone was MK-9(H2). Whole-cell hydrolysates of strain S2-20T contained meso-diaminopimelic acid, arabinose and galactose. The DNA G+C content was 77.8 mol%. On the basis of phylogenetic, phenotypic and chemotaxonomic characteristics, strain S2-20T should be classified within a novel species of the genus Kineococcus, for which the name Kineococcus xinjiangensis sp. nov. is proposed. The type strain is S2-20T (=CCTCC AB 207179T =KCTC 19474T).

Various bacterial species have the capacity to survive under conditions that are commonly considered extreme, such as cold, hot, saline and dry environments. Because of our interest in radiation-resistant bacteria and the correlation that has been made between desiccation and radiation resistance (Mattimore & Battista, 1996), we have studied bacteria that survive in the desert. Desiccation- and radiation-resistant bacteria have been observed in several genera, including Deinococcus, Rubrobacter, Hymenobacter, Methylobacterium, Kocuria and Kineococcus (Rainey et al., 2005; Phillips et al., 2002). The genus Kineococcus was first created by Yokota et al. (1993) with the species Kineococcus aurantiacus, based on a single strain isolated from soil. Two more species have been added to the genus in recent years; Kineococcus radiotolerans and Kineococcus marinus were reported in 2002 and 2006, respectively. In the present study, a strain with diffusible pigment production was characterized as a novel member of the genus Kineococcus.

Strain S2-20T was isolated from a sand sample from a desert in Xinjiang Province using tenfold-diluted tryptic soy broth (TSB/10; Difco) agar. Colonies were brown–orange, circular, convex with entire edges and produced a brownish diffusible pigment but not clusters after 7 days of incubation on TSB/10 agar at 30 °C. Cell morphology was examined by light microscopy (Olympus) and by electron microscopy (Hitachi) using methods published previously (Glaubert, 1991; Bozzola & Russell, 1999). Motility was observed on motility agar (TSB/10 with 0.5 % agar). The isolate could also grow on tenfold-diluted marine agar 2216 (MA/10; Difco) but not on PTYG medium (Phillips et al., 2002).

Genomic DNA for amplification of the 16S rRNA gene was extracted as described by Earl et al. (2002). The 16S rRNA gene was amplified by PCR with bacterial universal primers 27F and 1492R (Lane, 1991) and the PCR products were sequenced by Invitrogen Biotechnology. Similarity searches with the derived sequence were done in NCBI (http://www.ncbi.nlm.nih.gov/). Phylogenetic analysis was performed by using MEGA, version 3.1 (Kumar et al., 2004), after multiple alignment of the data via CLUSTAL_X (Thompson et al., 1997). Distances were obtained using options according to Kimura’s two-parameter model (Kimura, 1980) and clustering was performed by using the neighbour-joining method (Saitou & Nei, 1987) and maximum-parsimony method (data not shown). The topology of the phylogenetic tree reconstructed by the neighbour-joining method was evaluated by using bootstrap resampling (Felsenstein, 1985) with 1000 replications (Fig. 1).

The 16S rRNA gene sequence of strain S2-20T (1385 bp) showed less than 96 % similarity to the type strains of recognized Kineococcus species. The highest 16S rRNA gene sequences similarities to members of the genus Kineococcus

†These authors contributed equally to this work.
Abbreviation: A2pm, diaminopimelic acid.
The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain S2-20T is EU543662.
were shown to Kineococcus radiotolerans SRS 30216T (95.7 %) and Kineococcus aurantiacus IFO 15268T (95.2 %). Although the highest sequence similarity was shown to Kineosporia rhamnosa ICM 9954T (95.9 %), strain S2-20T does not form spores (by light microscopy), and can therefore be differentiated easily from members of the genus Kineosporia (Kudo et al., 1998).

To investigate chemotaxonomic characteristics, biomass was obtained from cultures grown in TSB/10 at 30 °C for 7 days on a rotary shaker. Cells were harvested by centrifugation and washed twice with distilled water. Analyses of amino acids and sugars in whole-cell hydrolysates were performed according to procedures described by Staneck & Roberts (1974). The diagnostic diamino acid of the peptidoglycan was meso-diaminopimelic acid (meso-A2pm). Whole-cell hydrolysates contained arabinose and galactose as characteristic sugars. Fatty acid methyl esters were analysed utilizing the Sherlock Microbial Identification System (MIDI, 2005) according to the manufacturer’s instructions after 48 h cultivation on TSB agar at 30 °C. Strain S2-20T had anteiso-C15:0 as the major fatty acid. Menaquinones were extracted and then identified by HPLC as described by Xie & Yokota (2003). Strain S2-20T contained MK-9(H2) as the major component. The DNA G+C content of strain S2-20T, determined using HPLC (Mesbah et al., 1989), was 77.8 mol%. These characteristics also suggest that strain S2-20T is not a member of the genus Kineosporia. Members of the genus Kineosporia contain almost equal amounts of L1- and meso-A2pm or mainly L1- or meso-A2pm as the diaminopimelic acid isomer and galactose, glucose, mannose and ribose as cell-wall sugars and lack anteiso-branched fatty acids (Kudo et al., 1998); members of the genus Kineococcus contain meso-A2pm, arabinose and galactose in the cell wall and anteiso-C15:0 as the major fatty acid (Yokota et al., 1993; Phillips et al., 2002; Lee, 2006).

To investigate further physiological and biochemical characteristics, we used the methods described by Smibert & Krieg (1994) for the following tests: oxidase and catalase reaction, H2S production and hydrolysis of starch, casein, aesculin, gelatin and urea. The KOH test (Gregersen, 1978) was used to test the Gram reaction. Anaerobic growth was assessed on TSB/10 agar (both with and without KNO3) incubation in airtight jars containing an AnaeroPack (Oxoid). Temperature tolerance was tested by checking growth at 4, 14, 21, 30, 37, 40 and 42 °C and tolerance of salinity was tested with growth in TSB/10 with 0, 1, 2 and 3 % (w/v) NaCl. The pH range (pH 5–10 at intervals of 1 pH unit) for growth was determined in tenfold-diluted marine broth (Difco). In addition, carbohydrate utilization was tested using a defined medium solidified with deionized water-washed agar, as described previously (Rainey et al., 2005). Growth was examined visually on plates incubated at 30 °C for up to 7 days. Negative-control plates did not include carbon sources. The physiological and biochemical characteristics of strain S2-20T are listed in Table 1 and in the species description. In addition, the UV-C resistance of strain S2-20T and Kineococcus marinus NRRL B-24439T was compared, showing that the survival rate of strain S2-20T was higher than that of Kineococcus marinus NRRL B-24439T (data not shown).

It has been recognized that organisms with more than 3 % 16S rRNA gene sequence dissimilarity are likely to belong to different genomic species (Stackebrandt & Goebel, 1994). Thus, from the phylogenetic analysis, physiological tests and chemotaxonomic features, it is evident that strain S2-20T represents a distinct, previously undescribed species within the genus Kineococcus, for which the name Kineococcus xinjiangensis sp. nov. is proposed.

Description of Kineococcus xinjiangensis sp. nov.

Kineococcus xinjiangensis (xin.jiang.en’sis. N.L. masc. adj., xinjiangensis pertaining to Xinjiang, a province in northwest China, where the type strain was isolated).

Cells stain Gram-positive and are strictly aerobic, motile, non-spore-forming cocci, 0.8–1.2 μm in diameter. Colonies are brown–orange-coloured and produce a brownish diffusible pigment. Catalase-positive and oxidase-negative. Growth occurs at 14–40 °C (optimum 37 °C), pH 6–10 (optimum pH 7–9) and at up to 2 % NaCl (optimum 0–1 %). Does not hydrolyse starch or urea. Hydrolysis of aesculin, casein and gelatin is positive. H2S is not produced. A variety of carbon sources are used including rhamnose, sucrose, maltose, d-glucose, L-arabinose and inositol, but not mannitol, d-ribose or sorbitol. The major fatty acid is anteiso-C15:0. The diagnostic diamino acid of the peptidoglycan is meso-A2pm. Whole-cell hydrolysates contain arabinose and galactose as.
Table 1. Differential phenotypic characteristics of strain S2-20T and other Kineococcus species

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production of brown diffusible pigment</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Utilization of:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mannitol</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>Rhamnose</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>D-Ribose</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>Inositol</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Sorbitol</td>
<td>–</td>
<td>+</td>
<td>ND</td>
<td>+</td>
</tr>
<tr>
<td>Maltose</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>Hydrolysis of:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aesculin</td>
<td>+</td>
<td>ND</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>Starch</td>
<td>–</td>
<td>ND</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>Temperature range for growth (°C)</td>
<td>14–40</td>
<td>11–41</td>
<td>9–36</td>
<td>4–37</td>
</tr>
<tr>
<td>pH range for growth</td>
<td>6.0–10.0</td>
<td>5.0–9.0</td>
<td>6.0–9.0</td>
<td>5.1–10.1</td>
</tr>
<tr>
<td>Growth on 7% NaCl</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>DNA G+C content (mol%)</td>
<td>77.8</td>
<td>ND</td>
<td>73.9</td>
<td>76.6</td>
</tr>
</tbody>
</table>

characteristic sugars. The major menaquinone is MK-9(H2). The DNA G+C content of the type strain is 77.8 mol%.

The type strain is S2-20T (=CCTCC AB 207179T =KCTC 19474T), isolated from desert sand in Xinjiang Province, China.

Acknowledgements

This work was supported by the R & D Infrastructure and Facility Development Program from the Ministry of Science and Technology of the People’s Republic of China (Grant 203 no. 2005DKA21208). We also thank Dr David Labeda and Dr Alejandro Rooney from the NRRL for offering us Kineococcus marinus NRRL B-24439T for taxonomy study.

References

