Four novel *Arthrobacter* species isolated from filtration substrate

Linxian Ding,1,2 Taketo Hirose1,2 and Akira Yokota2

1Hirose Laboratory Environmental Microorganism, Honcho, Funabashi-City, Chiba Pref. 4-43-20, Japan
2Laboratory of Bioresources, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan

Four Gram-positive, non-motile, non-spore-forming bacterial strains, LC4T, LC6T, LC10T and LC13T, were isolated from a filtration substrate made from trass, a volcanic rock, and their taxonomic positions were investigated by a polyphasic taxonomic approach. The novel strains grew over a temperature range of 5–40 °C, at pH values of 6–11 and in the presence of 3–7% (w/v) NaCl. A phylogenetic tree based on 16S rRNA gene sequences showed the novel strains formed a distinct evolutionary lineage within the genus *Arthrobacter*. Chemotaxonomic analyses demonstrated that the major menaquinone was MK-9(H2), a menaquinone typical of the *Arthrobacter globiformis* group. The major fatty acid was anteiso-C15:0 and the major amino acid present in the cell-wall peptidoglycan was L-lysine. These observations supported the affiliation of the novel strains to the genus *Arthrobacter*. On the basis of their morphological, physiological and genotypic characteristics, the new isolates are considered to represent four novel species of the genus *Arthrobacter*, for which the names *Arthrobacter niigatensis* sp. nov. (type strain LC4T=IAM 15382T=CCTCC AB 206012T), *Arthrobacter alkaliphilus* sp. nov. (type strain LC8T=IAM 15383T=CCTCC AB 206013T), *Arthrobacter echigonensis* sp. nov. (type strain LC10T=IAM 15385T=CCTCC AB 206017T) and *Arthrobacter albidus* sp. nov. (type strain LC13T=IAM 15386T=CCTCC AB 206018T) are proposed.

The genus *Arthrobacter* was established by Conn & Dimmick (1947) and includes most of the bacteria that exhibit a rod (in young cultures)–coccus (in older cultures) morphological cycle, although some members of the genus are spheres, occurring in pairs and tetrads, such as *Arthrobacter agilis*. The members of this genus have been isolated from various environments, such as air, soil, fresh water, oil, brine, airborne infections, tobacco leaves, human skin, mural paintings, sewage and activated sludge (Sguros, 1955; Li et al., 2004; Conn & Dimmick, 1947; Takeuchi & Yokota, 1991; Stackebrandt et al., 1983; Westerberg et al., 2000; Koch et al., 1995; Heyman et al., 2005; Skerman et al., 1980; Margesin et al., 2004, Rzechowska, 1976). It has been reported that some poisonous contaminants and difficult-to-degrade chemical substances (such as PCB, dioxin and oil) can be degraded by species of the genus *Arthrobacter* (Rzechowska, 1976; Marks et al., 1984; Singer et al., 2000; Duarte et al., 2001; Fukatsu et al., 2005; Jussila et al., 2006). Denitrification activity has been described for some species of the genus *Arthrobacter* (Carter et al., 1995). At the present time, there are more than 50 recognized species of the genus *Arthrobacter*. This study describes four high G+C, Gram-positive bacterial strains, LC4T, LC6T, LC10T and LC13T, which were isolated from a filtration substrate and, from the results of a polyphasic taxonomic approach, are suggested to represent four novel species of the genus *Arthrobacter*.

The bacterial strains were isolated from a filtration substrate made from volcanic soil using NY medium (1.6 g nutrient broth l−1 and 0.5 g yeast extract l−1) containing 0.05 g cycloheximide l−1, 0.1 g kabicidin l−1, 1.5% agar and adjusted to pH 7.0. All isolates were maintained on NY medium. The reference strains used in this study, *Arthrobacter methylotrophus* IAM 15313T, *Arthrobacter atrocyaneus* IAM 12339T and *Arthrobacter chlorophenolicus* JCM 12360T, were obtained from the IAM Culture Collection (University of Tokyo, Japan) and JCM (Japan Collection of Microorganisms). All strains were cultured at 30 °C. Genomic DNA extraction (Sambrook et al., 1989) and PCR-mediated amplification of the 16S rRNA gene and sequencing of the PCR products were carried out as described previously (Ding & Yokota, 2002, 2004). Sequence alignment was performed using CLUSTAL_X.
Four novel Arthrobacter species

v1.83 (Thompson et al., 1994). The evolutionary distance matrix was calculated using Kimura's two-parameter method (Kimura, 1980). A phylogenetic tree was constructed by the neighbour-joining (Saitou & Nei, 1987) and maximum-likelihood methods (Felsenstein, 1981). The topology of the phylogenetic tree was evaluated by bootstrap analysis with 1000 replications according to the method of Felsenstein (1985). The G+C content of the DNA was determined by HPLC as described by Mesbah et al. (1989). DNA–DNA relatedness experiments were conducted using a modification of the microplate method of Ezaki et al. (1989) and using photobiotin-labelled DNA and microdilution wells as described by Willems et al. (2001). The DNA–DNA hybridization temperature was 55°C.

Analysis of cell-wall amino acids was performed by suspending 300 mg of dried cells in 10–20 ml of water and then around 1 g of glass beads (0.11–0.12 mm in diameter) was added and the suspension was treated at 180 W for 30 min using an ultrasonicator (201M ultrasonic oscillator; Kubota). The crude cell wall preparation was washed with water, centrifuged in 4% SDS solution to eliminate proteins and the purified cell walls were freeze-dried. The amino acid composition was determined by TLC followed by HPLC. For two dimensional TLC, 2-propanol/acetic acid/water (75 : 10 : 15, v/v) was used in the first dimension and methanol-pyridine/10 M hydrochloric acid/water (64 : 8.2 : 14, v/v) was used for the second dimension. The amino acids of the cell-wall peptidoglycan were determined according to the methods of Schleifer & Kandler (1972) and Harper & Davis (1979). The cellular fatty acids were extracted according to the protocol of the MIDI system (Microbial ID Inc.). The bacteria were inoculated in TSBA medium for 48 h at 30°C. The fatty acid methyl esters (FAMEs) were obtained from the cells by saponification, methylation and extraction. Analysis by GC was controlled by MIS software (Microbial ID Inc.) and the peaks were automatically integrated and identified by the Microbial Identification software package (Sasser, 1990). Isoprenoid quinones were extracted with chloroform/methanol (2 : 1, v/v) and purified by TLC using n-hexane-diethyl ether (85 : 15, v/v) as the solvent and the menaquinone fraction was analysed by HPLC.

The biochemical profile was determined with API ZYM and API CORYNE strips (bioMérieux). The optimum temperature and the pH for growth were also determined. The range of test temperatures was 5, 10, 20, 30, 37, 40, 45 and 50°C and the pH range tested was 4, 5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 11 and 12. The results of NaCl tolerance tests were obtained with 3, 5 and 7% (w/v) NaCl in nutrient broth and the incubation temperature was 27°C.

Colonies of the novel isolates on nutrient agar were round, convex, glossy, with entire margins and had a light grey or light yellow colour. Cells were Gram-positive, aerobic, exhibited a rod–coccus growth cycle, produced non-fluorescent pigment and were non-spore-forming and non-motile. The growth temperature range of strains LC4T and LC6T was 5–40°C, however, strains LC10T and LC13T grew between 10 and 40°C. The optimal temperature for growth was 30°C for all of the novel strains. The pH range for growth of strains LC4T and LC6T was pH 6–11 and was 6–10 for strains LC10T and LC13T. Strains LC4T, LC6T and LC13T could grow on nutrient broth medium with 7% NaCl. Strain LC10T could grow on medium with 5% NaCl, but was unable to grow in the presence of 7% NaCl.

The 16S rRNA gene sequences of all members of the genus Arthrobacter and related genera obtained from DDBJ/EMBL/GenBank were compared and a phylogenetic tree was constructed. The phylogenetic analysis included all recognized species of the genus Arthrobacter. The analysis based on 16S rRNA gene sequences indicated that all of the novel isolates belonged to the genus Arthrobacter. As can be seen in Fig. 1, the four novel isolates were divided into three clusters. At the 16S rRNA gene sequence level, strains LC4T, LC6T, LC10T and LC13T had sequence similarities of 97.0–97.4% compared with A. chlorophenolicus JCM 12360T (GenBank accession no. AF102267), A. methylotrophus IAM 15313T (AF235090) and A. atrocyaneus IAM 12339T (X80746).

In order to determine the genotypic relatedness between the novel strains and recognized species of the genus Arthrobacter, DNA–DNA hybridization analyses were performed. The DNA–DNA relatedness value between strain LC4T and A. chlorophenolicus was 32.1%, between strain LC6T and A. methylotrophus 14.1%, between strain LC10T and A. atrocyaneus 11.2%, between strain LC10T and LC13T, 25.3%, and between strain LC13T and A. atrocyaneus, 9.6%. DNA–DNA relatedness below 70% is considered to be the threshold level for the separation of species (Wayne et al., 1987; Stackebrandt & Goebel, 1994; Stackebrandt et al., 2002) and so these results show that strains LC4T, LC6T, LC10T and LC13T all represent novel genospecies.

The morphological and biochemical characteristics of the novel strains are shown in Table 1. In the genus Arthrobacter, little or no acid is reported to be produced from glucose (Keddie et al., 1984), however, in this study, glucose could be oxidized by isolates LC4T, LC6T and LC10T and strain LC13T showed weak activity. Isoprenoid menaquinone composition, fatty acid content and DNA G+C content are shown in Table 2. All four novel strains had lysine as the diagnostic diamino acid of the cell-wall peptidoglycan. The major amino acids of the cell wall were lysine, alanine, serine and threonine. The major isoprenoid menaquinone for the novel isolates was MK-9(H2). The major fatty acid was anteiso-C15:0 (44.0–74.4%), but anteiso-C17:0 (5.0–29.8%), iso-C15:0 (3.0–35.5%) and iso-C17:0 (2.5–12.8%) were also present. The DNA G+C contents of strains LC4T, LC6T, LC10T and LC13T were 70.8, 69.0, 71.8 and 70.8 mol%, respectively.

The differences in biochemical and chemotaxonomic characteristics indicated that the four new isolates LC4T,
LC6T, LC10T and LC13T were distinct from the recognized species of the genus *Arthrobacter* and supported the proposal that the strains should be classified as four novel species of the genus *Arthrobacter*, for which the names *Arthrobacter niigatensis* sp. nov., *Arthrobacter alkaliphilus* sp. nov., *Arthrobacter echigonensis* sp. nov., and *Arthrobacter albidus* sp. nov., are proposed, respectively.

Description of Arthrobacter niigatensis sp. nov.

Arthrobacter niigatensis (ni.i.ga.ten’sis. N.L. masc. adj. *niigatensis* pertaining to the Niigata region, Japan).

Cells are non-motile and non-spore-forming. Gram-positive, catalase-positive, oxidase-negative, shows a rod–coccus growth cycle and produces non-fluorescent pigment. Growth occurs on nutrient broth agar at 5–40 °C, optimal temperature for growth is 30 °C. Grows in the presence of 3–7% (w/v) NaCl. The pH range for growth is 6–11 and the optimum pH is 7.5. Colonies are round, convex, glossy, with entire margins and are light grey or light yellow. Using the API CORYNE system, a positive reaction is observed for reduction of nitrate, activities of pyrazinamidase, pyrrolidonyl arylamidase and urease, hydrolysis of gelatin and for the utilization of glucose, ribose, lactose and sucrose. A negative reaction is obtained for utilization of maltose and the utilization of mannitol, xylose and glycogen is weak. Using the API ZYM system, activity is detected for alkaline phosphatase, acid phosphatase, leucine arylamidase, trypsin, naphthol-AS-BI-phosphohydrolase, esterase C4, esterase lipase C8, β-galactosidase, β-glucuronidase, α-glucosidase, β-glucosidase and α-mannosidase. No activity is detected for lipase C14, α-galactosidase, N-acetyl-β-glucosaminidase, α-chymotrypsin or α-fucosidase. Activities of valine...
arylaminidase and cystine arylamidase are weak. The predominant fatty acids are anteiso-C₁₅₇₀, anteiso-C₁₇₇₀ and iso-C₁₆₇₀. The diamino acid of the cell-wall peptidoglycan is lysine and major components are lysine, serine, threonine and alanine. Menaquinones are MK-9(H₂), MK-8(H₃) and MK-8(H₄) (approx. 64, 17 and 15 %, respectively).

The type strain, strain LC₄ᵀ (IAM 15382ᵀ = CECTCC AB 206012ᵀ), was isolated from a filtration substrate made from volcanic rock from Niigata, Japan. The DNA G+C content of the type strain is 70.8 mol%.

Description of Arthrobacter alkaliphilus sp. nov.

Arthrobacter alkaliphilus [al.ka.li’phi.lus. N.L. n. alkali (from the Arabic word al-qaliy) the ashes of saltwort; Gr. adj. philos loving; N.L. masc. adj. alkaliphilus loving alkaline environments].

Cells are non-motile and non-spore-forming. Gram-positive, catalase-positive, oxidase-negative, shows a rod–coccus growth cycle and produces non-fluorescent pigment. Growth occurs on nutrient broth agar at 5–40 °C, optimal temperature for growth is 30 °C. Grows in the presence of 3–7 % NaCl. The pH range for growth is 6–11 and the optimum pH is 8.5. Colonies are round, convex, glossy, with entire margins and are light yellow. Using the API CORYNE system, positive reactions are observed for activities of pyrazinamidase, pyroolidinyl arylamidase and urease and for the utilization of glucose, ribose, maltose and mannitol. Negative reactions are obtained for nitrate reduction, for hydrolysis of gelatin and for utilization of glycogen, sucrose and xylose. Lactose gives a weak reaction. Using the API ZYM system, activity is detected for alkaline phosphatase, acid phosphatase, esterase lipase C₈, leucine arylamidase, valine arylamidase, trypsin, naphthol-AS-BI-phosphohydrolase, α-galactosidase, β-galactosidase, β-glucuronidase, α-glucosidase and α-mannosidase. No activity is detected for esterases C₄, lipase C₁₄, cystine arylamidase, β-glucosidase, N-acetyl-β-glucosaminidase or ι-x-fucosidase. The activity of α-chymotrypsin is weak. Predominant fatty acids are anteiso-C₁₅₇₀, anteiso-C₁₇₇₀ and iso-C₁₆₇₀. The diamino acid of the cell-wall teptidoglycan is lysine and the major components are lysine, serine, threonine and alanine. The menaquinone content is MK-9(H₂), MK-10(H₃) and MK-8(H₄) (approx. 77, 17 and 3 %, respectively).

The type strain, strain LC₆ᵀ (IAM 15385ᵀ = CECTCC AB 206013ᵀ), was isolated from a filtration substrate made from volcanic rock from Niigata, Japan. The DNA G+C content of the type strain is 69.0 mol%.

Description of Arthrobacter echigonensis sp. nov.

Arthrobacter echigonensis (echi.go.nen’sis. N.L. masc. adj. echigonensis pertaining to the Echigo region, in Japan).

Table 1. Differential phenotypic characteristics of the novel strains

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolation source</td>
<td>Filtration substrate</td>
<td>Filtration substrate</td>
<td>Filtration substrate</td>
<td>Filtration substrate</td>
<td>Soil</td>
<td>Soil</td>
<td>UK</td>
</tr>
<tr>
<td>Colony colour</td>
<td>LG/LY</td>
<td>LY</td>
<td>LG/LY</td>
<td>W/LY</td>
<td>PG</td>
<td>CY</td>
<td>G/W</td>
</tr>
<tr>
<td>Optimum pH</td>
<td>7.5</td>
<td>8.5</td>
<td>7</td>
<td>7</td>
<td>ND</td>
<td>7.2–7.5</td>
<td>6</td>
</tr>
<tr>
<td>Reduction of nitrate</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>(+)</td>
<td>(+)</td>
<td>(+)</td>
</tr>
<tr>
<td>Pyrrolidonyl arylamidase</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>Urease</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>(+)</td>
</tr>
<tr>
<td>Hydrolysis of gelatin</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>(+)</td>
<td>(+)</td>
<td>(+)</td>
</tr>
<tr>
<td>Utilization of:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maltose</td>
<td>–</td>
<td>+</td>
<td>(+)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>Mannitol</td>
<td>(+)</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Ribose</td>
<td>+</td>
<td>(+)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>Sucrose</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>(+)</td>
<td>+</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>Xylose</td>
<td>(+)</td>
<td>–</td>
<td>–</td>
<td>(+)</td>
<td>–</td>
<td>(+)</td>
<td>(+)</td>
</tr>
<tr>
<td>Esterase (C₄)</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>(+)</td>
<td>(+)</td>
<td>(+)</td>
<td>–</td>
</tr>
<tr>
<td>Cystine arylamidase</td>
<td>(+)</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>α-Chymotrypsin</td>
<td>–</td>
<td>(+)</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>α-Galactosidase</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>β-Glucosidase</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>(+)</td>
</tr>
</tbody>
</table>
Cells are non-motile and non-spore-forming. Gram-positive, catalase-positive, oxidase-negative, shows a rod–coccus growth cycle and produces non-fluorescent pigment. Growth occurs on nutrient broth agar at 10–40 °C, optimal temperature for growth is 30 °C. Grows in presence of 3–5 % NaCl (w/v), but no growth occurs in the presence of 7 % NaCl. The pH range for growth is 6–10 and the optimum pH is 7. Colonies are round, convex, glossy, with entire margins and are light grey or light yellow. Using the API CORYNE system, positive reactions are observed for activities of pyrazinamidase, pyrrolidonyl arylamidase and for the utilization of glucose, ribose and sucrose. Negative reactions are obtained for nitrate reduction, hydrolysis of gelatin, urease activity and for the utilization of xylose, mannitol, lactose and glycogen. Utilization of maltose is weak. By using the API ZYM system, activity is detected for alkaline phosphatase, acid phosphatase, esterase C4, esterase lipase C8, leucine arylamidase, cystine arylamidase, trypsin, naphthol-AS-BI-phosphohydrolase β-galactosidase, β-glucuronidase, α-glucosidase and α-mannosidase. No activity detected for lipase C14, α-chymotrypsin, α-galactosidase, β-glucosidase, N-acetyl-β-glucosaminidase or α-fucosidase. The predominant fatty acids are anteiso-C15 : 0, anteiso-C17 : 0 and iso-C15 : 0. The diamino acid of the cell-wall peptidoglycan is lysine and the major components are lysine, serine and alanine. The menaquinone content is MK-9(H2), MK-10(H2) and MK-8(H2) (approx. 83, 6 and 4 %, respectively).

The type strain, strain LC10T (=IAM 15385T=CCTCC AB 206017T), was isolated from a filtration substrate made from volcanic rock from Niigata, Japan. The DNA G+C content of the type strain is 71.8 mol%.

Table 2. Chemotaxonomic characteristics of the novel species of the genus Arthrobacter

<table>
<thead>
<tr>
<th>Taxa</th>
<th>A. niigatensis sp. nov. LC4T</th>
<th>A. alkaliphilus sp. nov. LC6T</th>
<th>A. echiagonensis sp. nov. LC10T</th>
<th>A. albidas sp. nov. LC13T</th>
<th>A. chlorophenolicus JCM 12360T (data from Westerberg et al., 2000)</th>
<th>A. methylotrophus IAM 15313T (Borodina et al., 2002)</th>
<th>A. atrocyaneus IAM 12339T (Koch et al., 1995)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peptidoglycan amino acid composition</td>
<td>Lys, Ser, Thr, Ala</td>
<td>Lys, Ser, Thr, Ala</td>
<td>Lys, Ser, Ala</td>
<td>Lys, Ser, Ala</td>
<td>Lys-Ser-Thr-Ala</td>
<td>Lys-Ala</td>
<td>Lys-Ser-Ala</td>
</tr>
<tr>
<td>Menaquinones (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MK-7(H2)</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MK-8</td>
<td>16.7</td>
<td>2.1</td>
<td>4.0</td>
<td>2.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MK-8(H4)</td>
<td>14.8</td>
<td>2.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MK-9</td>
<td>64.2</td>
<td>77.0</td>
<td>82.6</td>
<td>82.9</td>
<td>60.9</td>
<td>79.0</td>
<td>Major</td>
</tr>
<tr>
<td>MK-10(H2)</td>
<td>17.0</td>
<td>5.7</td>
<td>14.0</td>
<td></td>
<td>7.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MK-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MK-11(H2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fatty acids (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>iso-C14 : 0</td>
<td>1.6</td>
<td>0.7</td>
<td>0.9</td>
<td>0.4</td>
<td>4.0</td>
<td>1.9</td>
<td>1.1</td>
</tr>
<tr>
<td>C14 : 0</td>
<td>1.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>2.0</td>
<td>0.9</td>
<td>0.2</td>
</tr>
<tr>
<td>iso-C15 : 0</td>
<td>8.4</td>
<td>4.5</td>
<td>14.7</td>
<td>14.5</td>
<td>7.0</td>
<td>7.1</td>
<td>29.0</td>
</tr>
<tr>
<td>anteiso-C15 : 0</td>
<td>51.2</td>
<td>58.0</td>
<td>55.0</td>
<td>43.5</td>
<td>66.0</td>
<td>74.4</td>
<td>38.8</td>
</tr>
<tr>
<td>iso-C16 : 0</td>
<td>12.8</td>
<td>7.1</td>
<td>5.8</td>
<td>5.3</td>
<td>10.0</td>
<td>5.7</td>
<td>9.5</td>
</tr>
<tr>
<td>C16 : 0</td>
<td>5.6</td>
<td>1.1</td>
<td>0.8</td>
<td>1.1</td>
<td>3.0</td>
<td>1.6</td>
<td>0.9</td>
</tr>
<tr>
<td>Summed feature 3*</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>iso-C17 : 0</td>
<td>1.9</td>
<td>1.4</td>
<td>2.5</td>
<td>4.8</td>
<td>0.3</td>
<td>4.7</td>
<td></td>
</tr>
<tr>
<td>anteiso-C17 : 0</td>
<td>14.8</td>
<td>26.1</td>
<td>20.1</td>
<td>29.8</td>
<td>5.0</td>
<td>6.8</td>
<td>15.5</td>
</tr>
<tr>
<td>anteiso-C17 : 19c</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNA G+C content (mol%)</td>
<td>70.8</td>
<td>69.0</td>
<td>71.8</td>
<td>70.8</td>
<td>65.1</td>
<td>61.0</td>
<td>69.5–70.3</td>
</tr>
</tbody>
</table>

*Summed feature 3, C16 : 1v7c/iso-C15 : 0 2-OH.

Description of Arthrobacter albidas sp. nov.

Arthrobacter albidas (al’bi.dus. L. masc. adj. albidas whitish, referring to the colour of the colonies).

Cells are non-motile and non-spore-forming. Gram-positive, catalase-positive, oxidase-negative, shows a rod–coccus growth cycle and produces non-fluorescent pigment. Growth occurs on nutrient broth agar at 10–40 °C, optimal temperature for growth is 30 °C. Grows in...
the presence of 3–7 % (w/v) NaCl, but no growth occurs in the presence of 7 % NaCl. The pH range for growth is 6–10, and the optimum pH is 7. Colonies are round, convex, glossy, with entire margins and are white or light yellow. Using the API CORYNE system, positive reactions are observed for activities of pyrazinamidase, pyrrolidonyl arylamidase and urease and for the utilization of ribose and mannitol. Negative reactions are obtained for nitrate reduction, hydrolysis of gelatin and for the utilization of maltose, lactose and glycogen. Utilization of glucose, xylose and sucrose is weak. By using the API ZYM system, activity is detected for alkaline phosphatase, esterase lipase C8, leucine arylamidase, valine arylamidase, cystine arylamidase, trypsin, naphthol-AS-BI-phosphohydrolase, β-galactosidase, β-glucuronidase, α-glucosidase, β-glucosidase and α-mannosidase. No activity is detected for lipase C14, α-chymotrypsin, α-galactosidase, N-acetyl-β-glucosaminidase or α-fucosidase. Esterase C4 and acid phosphatase activities are weak. The predominant fatty acids are anteiso-C15:0, anteiso-C17:0 and iso-C15:0. The diagnostic diamino acid of the cell-wall peptidoglycan is lysine and the major components are lysine, serine and alanine. The menaquinone content is MK-9(H2), MK-10(H2) and MK-8(H4) (approx. 83, 14 and 2 %, respectively).

The type strain, strain LC13T (=IAM 15386T=CCSTCC 206018T), was isolated from a filtration substrate made from volcanic rock from Niigata, Japan. The DNA G+C content of the type strain is 70.8 mol%.

References

