Streptomyces nanshensis sp. nov., isolated from the Nansha Islands in the South China Sea

Xin-Peng Tian,1,2† Yu-Qin Zhang,2† Qing-Xin Li,1 Xiao-Yang Zhi,2 Shu-Kun Tang,2 Si Zhang1,3 and Wen-Jun Li1,2

Correspondence
Wen-Jun Li
wjli@ynu.edu.cn
Si Zhang
zhangsi@scsio.ac.cn

1Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
2Key Laboratory for Microbial Resources of the Ministry of Education, PR China, and Laboratory for Conservation and Utilization of Bio-resources, Yunnan Institute of Microbiology, Yunnan University, Kunming, Yunnan 650091, PR China
3Hainan Key Laboratory of Tropical Marine Biotechnology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Sanya 572000, PR China

A novel actinomycete strain, designated SCSIO 01066T, was isolated from a marine sediment sample collected from the Nansha Islands in the South China Sea and was subjected to a polyphasic taxonomic study. A phylogenetic tree based on 16S rRNA gene sequences showed that strain SCSIO 01066T had the highest similarity (96.5 %) to members of the genus Streptomyces and was loosely associated with Streptomyces armeniacus JCM 3070T, Streptomyces cacaoi subsp. cacaoi NBRC 12748T and Streptomyces sodiiphilus YIM 80305T. Predominant menaquinones, major fatty acids and morphological properties were also consistent with typical characteristics of the genus Streptomyces; however, the presence of phosphatidylglycerol in the phospholipid pattern differs greatly from those of members of the genus Streptomyces. Additionally, strain SCSIO 01066T showed some physiological differences from its most closely related neighbours. Based on the polyphasic data, a novel species, Streptomyces nanshensis sp. nov., is proposed, with the type strain SCSIO 01066T (KCTC 19400T = CCTCC AA 208005T).

The deep sea, covered by water >2000 m deep and comprising >50 % of the total sea surface, is a unique and extreme environment characterized by high pressure, low temperature, lack of light and little nutrition. In deep-sea sediments, marine micro-organisms occupy the main ecological niche, which carries out an important role in the recycling of carbon and nitrogen sources on the sea floor. Marine microbes have been paid more attention in recent years, especially Gram-positive bacteria, which comprise about 13 % of the total bacteria in marine sediment environments (Stevens et al., 2007). Streptomycetes exist not only in all kinds of terrestrial environments, but also ubiquitously in marine environments (Pathom-aree et al., 2006), as one of the main groups of marine actinomycetes (Maldonado et al., 2005). During our study on marine actinomycete resources in deep-sea sediments, strain SCSIO 01066T was recovered from an abyssal sediment sample. Based on the polyphasic data, this strain should be recognized as a member of a novel species of the genus Streptomyces, for which the name Streptomyces nanshensis sp. nov. is proposed.

Strain SCSIO 01066T was isolated from a deep-sea sediment sample, collected in June 2007 from the sea area of the Nansha Islands in the South China Sea (6° 40’ N 113° 33’ E) at a depth of 2015 m. The top 10 cm of sediment surface was obtained aseptically for sampling and then processed for cultivation experiments by using a standard dilution-plating method on ship within 2 h of sampling. This organism was isolated on Gauze no. 1 medium, modified with 50 % seawater instead of distilled water, after incubation at 28 °C for 3 weeks. The purified strain was maintained on ISP medium 2 and as 20 % (w/v) glycerol suspensions at −20 °C. Biomass for chemotaxonomic and molecular systematic studies was obtained by cultivation using ISP 2 broth medium (28 °C, 1 week, 150 r.p.m.).

Strain SCSIO 01066T grew well on ISP media 2, 3, 4 and 5 (Shirling & Gottlieb, 1966), Czapek’s solution agar

†These authors contributed equally to this work.

Abbreviations: PG, phosphatidylglycerol; DPG, diphosphatidylglycerol; PE, phosphatidylethanolamine; PI, phosphatidylinositol; PIM, phosphatidylinositol mannosides.

The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain SCSIO 01066T is EU589334.

003442 © 2009 IUMS Printed in Great Britain
Cells of strain SCSIO 01066T were aerobic and Gram-positive. Good growth occurred at pH 7.0 and 28 °C with 0–3 % (w/v) NaCl. This organism was susceptible to amikacin (30 µg per disc), amoxicillin (10 µg per disc), gentamicin (10 µg per disc), lincomycin (2 µg per disc), neomycin (10 µg per disc), netilmicin (30 µg per disc), norfloxacin (10 µg per disc), novobiocin (30 µg per disc), penicillin G (10 µg per disc), rifampicin (5 µg per disc), streptomycin (10 µg per disc), tetracycline (30 µg per disc), tobramycin (10 µg per disc) and vancomycin (30 µg per disc). It was resistant to ampicillin (10 µg per disc), ciprofloxacin (5 µg per disc), erythromycin (15 µg per disc) and sulfamethoxazole (23.75 µg per disc). Detailed physiological characteristics of this strain are given in the species description.

The isomers of diaminopimelic acid and whole-cell sugars were analysed according to the procedures developed by Hasegawa et al. (1983). Menaquinones were isolated by using the methods of Minnikin et al. (1984) and separated by HPLC (Kroppenstedt, 1982). Phospholipids were extracted and examined by using published procedures (Minnikin et al., 1979; Collins & Jones, 1980). Fatty acid analysis was performed by using standard methods (Sasser, 1990) and the results were compared with the database of fatty acids in the Microbial Identification System (MIDI, Inc.).

The cell wall of strain SCSIO 01066T contained L-diaminopimelic acid with whole-cell sugars of galactose and glucose. Phospholipids comprised phosphatidylglycerol (PG), diphosphatidylglycerol (DPG), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylglycerophosphate (PGP) and phosphatidylinositol mannosides (PIM) and an unknown phospholipid. The menaquinones were MK-9(H8) (77 %), MK-9(H6) (13.9 %), MK-10(H8) (3.9 %), MK-8(H8) (2.1 %), MK-9(H10) (1.9 %) and MK-10(H8) (0.7 %). The fatty acids were ai-C15:0 (32.42 %), i-C16:0 (25.66 %), i-C15:0 (12.35 %), ai-C17:0 (10.72 %), i-C16:0 (8.75 %), i-C17:0 (2.47 %), i-H-C16:1 (2.23 %), C16:0 (1.89 %), C15:0 (0.79 %), ai-C13:0 (0.57 %), i-C13:0 (0.48 %), C16:1i9 (0.53 %), ai-C17:1 C (0.44 %), ai-C14:0 (0.35 %) and C14:0 (0.35 %).

Extraction of genomic DNA and PCR amplification of the 16S rRNA gene were done as described previously (Li et al., 2007). Multiple alignments with sequences of the most closely related taxa and calculations of levels of sequence similarity were carried out by using CLUSTAL_X (Thompson et al., 1997). Phylogenetic analyses were performed by using three tree-making algorithms: the neighbour-joining (Saitou & Nei, 1987), maximum-likelihood (Felsenstein, 1981) and maximum-parsimony (Fitch, 1971) methods. A phylogenetic tree and distance matrix were reconstructed by using the neighbour-joining method of Saitou & Nei (1987) from K_nuc values (Kimura, 1980, 1983) using MEGA version 4.0 (Tamura et al., 2007). The topology of the phylogenetic tree was evaluated by the bootstrap resampling method of Felsenstein (1985) with 1000 replicates. The G+C content of genomic DNA was determined by using the HPLC method (Mesbah et al., 1989).

Based on the almost-complete 16S rRNA gene sequence (1405 bp) of strain SCSIO 01066T, BLAST search results...
showed that this new isolate had the highest similarity (96.5%) to members of the genus *Streptomyces*. Preliminary phylogenetic analysis, which included available, almost full-length sequences of type strains of species in the genus *Streptomyces*, showed that strain SCSIO 01066\(^T\) was associated with these members of the genus *Streptomyces*. Morphological and chemotaxonomic characteristics, including cell-wall type, predominant menaquinones and major fatty acids, were also consistent with those of members of the genus *Streptomyces*. All of the above data confirmed that the new isolate should be assigned to the genus *Streptomyces*.

However, a phylogenetic tree (Fig. 2) based on the closest neighbours of strain SCSIO 01066\(^T\) showed that the new isolate was associated most closely with *Streptomyces*...
Streptomyces nanshensis (nan.shen’sis. N.L. adj. nanshensis pertaining to the sea area of the Nansha Islands in the southern part of the South China Sea, from where the type strain was isolated).

Aerobic, Gram-positive actinomycete that forms extensively branched substrate mycelia and aerial hyphae that differentiate into long, spiral spore chains. Spore surface is smooth. Soluble pigments are not produced. Negative for hydrolysis of Tweens 40 and 80, gelatin, starch, cellulose, milk coagulation and peptonization, H₂S production, oxidase and nitrate reduction, but positive for catalase, hydrolysis of Tweens 20 and 60, melanin production and utilization of urea. D-Arabinose, cellobiose, citrate, fructose, D-galactose, D-glucose, inositol, maltose, D-mannitol, D-mannose, raffinose, L-rhamnose, D-ribose, sucrose, trehalose and D-xylose are used as sole carbon sources for growth, but not acetate, dulcitol, D-lactose, D-sorbitol or xylitol. The pH, NaCl concentration and temperature ranges for growth are pH 6.0–8.0, 0–7 % and 10–37 °C, respectively. The cell wall contains l-diaminopimelic acid with whole-cell sugars of galactose and glucose. Phospholipids comprise PG, DPG, PE, PI, PIM and an unknown phospholipid. The predominant menaquinones are MK-9(H₈) and MK-9(H₆). The major fatty acids are ai-C₁₅:₀, i-C₁₆:₀, i-C₁₅:₀, ai-C₁₇:₀ and i-C₁₄:₀. The G+C content of genomic DNA is 72.6 mol%.

The type strain, SCSIO 01066ᵀ (= KCTC 19400ᵀ = CCTCC AA 208005ᵀ), was isolated from a sediment sample taken at a depth of 2015 m, collected from the Nansha Islands in the South China Sea.

Acknowledgements

The authors are grateful to Dr Jean Euzéby for support with nomenclature. This research was supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (KZCX2-YW-216), the China National Key Program for Base Research (2005CCA04800), the National Basic Research Program of China (no. 2004CB719601), the National Natural Science Foundation of China (no. 30600001) and the Key Project of Chinese Ministry of Education (no. 206139). W.-J. L. was supported by the Program for New Century Excellent Talents in University.

References

Table 1. Comparison of characteristics of strain SCSIO 01066ᵀ and its most closely related neighbours in the genus *Streptomyces*

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colony colour on ISP 2</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>GW</td>
</tr>
<tr>
<td>Spore surface</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>WS</td>
</tr>
<tr>
<td>Spore-chain morphology</td>
<td>SP</td>
<td>SP</td>
<td>SP</td>
<td>ST RA</td>
</tr>
<tr>
<td>Production of diffusible pigment</td>
<td>−</td>
<td>ND</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>Hydrolysis of:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gelatin</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Starch</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Melanoid pigment</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>H₂S production</td>
<td>−</td>
<td>ND</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Utilization of:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glucose</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Arabinose</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Mannitol</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Fructose</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Rhamnose</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Sucrose</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Raffinose</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Inositol</td>
<td>+</td>
<td>ND</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Xylose</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
</tr>
</tbody>
</table>
base substitutions through comparative studies of nucleotide
sequence. J Mol Evol 16, 111–120.

Cambridge: Cambridge University Press.

HPLC using reverse phase (RP18) and a silver loaded ion exchanger
as stationary phases. J Liq Chromatogr 5, 2359–2387.

Lanoot, B., Vancanneyt, M., Cleenwerck, I., Wang, L., Li, W., Liu, Z. &
Swings, J. (2002). The search for synonyms among streptomycetes by
using SDS-PAGE of whole-cell proteins. Emendation of the species
Streptomyces aurantiacus, Streptomyces cacaoi subs. cacaoi, Streptomyces

Li, W. J., Xu, P., Schumann, P., Zhang, Y. Q., Pakall, R., Xu, L. H.,
Stackebrandt, E. & Jiang, C. L. (2007). Georgenia ruanii sp. nov., a
novel actinobacterium isolated from forest soil in Yunnan (China)
and emended description of the genus Georgenia. Int J Syst Evol
Microbiol 57, 1424–1428.

geographically widespread marine sediments. Antonie van
Leeuwenhoek 87, 11–18.

measurement of the G+C content of deoxyribonucleic acid by high-

Minnikin, D. E., Collins, M. D. & Goodfellow, M. (1979). Fatty acid and
polar lipid composition in the classification of Cellulomonas,

Minnikin, D. E., O’Donnell, A. G., Goodfellow, M., Alderson, G.,
procedure for the extraction of isoprenoid quinines and polar lipids.

& Goodfellow, M. (2006). Diversity of actinomycetes isolated from
Challenger Deep sediment (10,898 m) from the Mariana Trench.
Extremophiles 10, 181–189.

of cellular fatty acids. USFCC Newsl 20, 16.

Manual of Methods for General Bacteriology, pp. 409–443. Edited by P.
Gerhardt, R. G. E. Murray, R. N. Costilow, E. W. Nester, W. A.
Society for Microbiology.

Diversity and abundance of Gram positive bacteria in a tidal flat

evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol
Evol 24, 1596–1599.

Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. &
strategies for multiple sequence alignment aided by quality analysis

Waksman, S. A. (1961). The actinomycetes. In Classification,
Baltimore, MD: Williams & Wilkins.

armeniacus Kalakoutskii and Kusnetsov to Streptomyces: Streptomyces
armeniacus (Kalakoutskii and Kusnetsov) comb. nov. Int J Syst

Streptomyces Waksman and Henrici 1943, 339AL. In Bergey’s Manual
of Systematic Bacteriology, vol. 4, pp. 2452–2492. Edited by S. T.
Williams, M. E. Sharpe & J. G. Holt. Baltimore, MD: Williams &
Wilkins.

Xu, P., Li, W. J., Tang, S. K., Zhang, Y. Q., Chen, G. Z., Chen, H. H., Xu,
a novel member of the family Oxalobacteraceae isolated from China.