Does *Kiitricha* (Protista, Ciliophora, Spirotrichea) belong to Euplotida or represent a primordial spirotrichous taxon? With suggestion to establish a new subclass Protohypotrichia

Lifang Li,¹,² Chen Shao,¹ Weibo Song,¹ Denis H. Lynn,³ Zigui Chen¹ and Mann Kyoon Shin²

¹Laboratory of Protozoology, KLM, Ocean University of China, Qingdao 266003, PR China
²Department of Biology, University of Ulsan, Ulsan 680-749, Republic of Korea
³Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada

The genus *Kiitricha* was long assumed to be the most primordial taxon in the Stichotrichia [hypotrichs sensu lato (s. l.)] based on its morphological features and was considered to be an intermediate between heterotrichs and the traditional hypotrichous assemblage. In order to evaluate the phylogenetic position of *Kiitricha* within the Hypotrichia, we sequenced the small-subunit rRNA gene and the alpha-tubulin gene for a Qingdao population of *Kiitricha marina*. Phylogenetic trees were constructed and compared to morphological and morphogenetic data. The results show that (i) *Kiitricha* is positioned near *Phacodinium*, both of which always form a sister clade to the assemblage including Stichotrichia, Hypotrichia, Oligotrichia and Choreotrichia, (ii) *Kiitricha*, which may represent an intermediate between heterotrichs (s. l.) and the Stichotrichia–Hypotrichia complex, is probably an ancestor-like form of the latter group and (iii) in contrast to morphological characters, both molecular and ontogenetic data support the separation of *Kiitricha* from the hypotrichs (s. l.). Thus, *Kiitricha* might be placed in the class Spirotrichea at about subclass level, next to Phaconidiidia, Hypotrichia and Stichotrichia, which supports the establishment of a new subclass Protohypotrichia n. subclass within the class Spirotrichea, with characterizations including slightly differentiated somatic ciliature (i.e. cirri on the ventral side generally uniform and non-grouped, no clearly defined marginal cirral rows, ciliature on the dorsal side mixed with cirri and dkinetids, no clearly differentiated dorsal kineties) and a unique but intermediate morphogenetic pattern of cortical structures between Hypotrichia and Stichotrichia.

INTRODUCTION

Spirotrich ciliates, which represent one of the major adaptive radiations within the phylum Ciliophora, are divided into four major ‘classical’ assemblages, the hypotrichs, oligotrichs, choreotrichs and stichotrichs (Lynn, 2008; Lynn & Small, 2002). These groups have been recognized as discrete clades for many years (Corliss, 1979; De Puytorac, 1994; Small & Lynn, 1985). Among them, the hypotrichs and stichotrichs are usually considered together in terms of the evolution of the sporadically distributed cirri on the ventral surface of ciliates. Kinetosomes distributed in kineties in anterior–posterior rows are assumed to be a feature of the ancestor of hypotrichs and stichotrichs, and this is supported by the inclusion of a ciliate with a simple kinetid organization, *Phacodinium*, which is clustered at the base of the class Spirotrichea (Shin et al., 2000). Furthermore, *Protocruzia*, another ciliate with simple dkinetids arranged in anterior–posterior kineties, is also placed at the base of the spirotrich clade using small-subunit (SSU) rRNA gene sequences, although its position is somewhat variable (Hammerschmidt et al., 1996).

A third genus, *Kiitricha*, has also been considered among the basal hypotrichs *sensu lato* (s. l.). This genus has a unique and probably ancestral pattern of simple ciliated dkinetids for the dorsal ciliature, uniform and slightly differentiated cirri on the ventral side and no differentiation of real marginal rows (Fig. 1) (see also Song & Wilbert, 1997).
Lynn & Small (1997, 2002) separated all known hypotrichs (s. l.) into the two subclasses Stichotrichia and Hypotrichia. The genus Kiitricha and its relatives were assigned to the latter, on the basis of a number of features: (i) both basal bodies in each dikinetid of the dorsal kineties (DK) are ciliated, a very unusual character in all known hypotrichs (s. l.), and some DK are a mixture of small cirri and dikinetids; (ii) no marginal rows are recognized, but many cirri are distributed onto the dorsal side, unique in all known ‘hypotrichs’; and, (iii) except for the transverse cirri, there is no differentiation of cirri on the ventral side (i.e. cirri are not grouped, but rather are distributed in anterior–posterior files, like those at the segregating stage of cirral anlagen during morphogenesis) (Song & Wilbert, 1997). In addition, Kiitricha has more than five transverse cirri, and so is remotely related to species with five frontoventral–transverse (FVT)-anlagen (i.e. all known euplotids). All these features indicate that Kiitricha might be an ancestral or ‘basal’ clade in relation to the ‘typical’ hypotrichs (s. l.).
In order to assess the ‘ancestral’ position of *Kiitricha* within the Spirotrichea, the SSU rRNA and alpha-tubulin genes of *Kiitricha marina* Nozawa, 1941 were sequenced and analysed. With the combination of morphological and morphogenetic characters, our work provides molecular evidence to ascertain the phylogenetic position of this unusual group.

METHODS

Ciliate collection and identification. *Kiitricha marina* was collected from the coast near Qingdao, China (36° 08′ N 120° 43′ E) (Fig. 2a–c, insets). Clonal cultures were established at room temperature for further analysis. Morphological and morphogenetic investigations were performed according to Song et al. (2004).

PCR amplification and sequencing. Cells were starved overnight and concentrated with low-speed centrifugation. Genomic DNA was extracted following Li & Song (2006). To minimize PCR amplification errors, high-fidelity TaKaRa ExTaq was used to amplify target genes using the following oligonucleotide primers: for the SSU rRNA gene, 5′-AACCTGGTTGATCCTGCCAGT-3′ (forward) and 5′-TGATCCTTCAGGGTCACCTAC-3′ (reverse), and for the alpha-tubulin gene, 5′-AAGGGCTCTTGGGCGTACAT-3′ (forward) and 5′-TGATGGCCTCAACCTTCTT-3′ (reverse). The typical amplification profile consisted of 5 min initial denaturation (95 °C)
and 30 cycles of denaturation at 94 °C for 1 min, annealing at 60 °C for 2 min and extension at 72 °C for 2 min, followed by an additional extension at 72 °C for 10 min. PCR products of the expected size were inserted into the pUCm-T vector (Sangon). A plasmid mini-prep spin column kit (Sangon) was used to harvest and purify plasmid DNA. DNA sequencing was accomplished using an ABI Prism 3730 Automated DNA Sequencer (Applied Biosystems) with three forward and four reverse internal primers (Greenwood et al., 1991). All sequences were confirmed from both strands. Sequence fragments were assembled into continuous sequences and edited with the Sequencher 4.0 software package (Gene Codes Corp.).

Phylogenetic analyses and tree construction. Nucleotide sequences of the SSU rRNA gene were aligned using CLUSTAL W, version 1.80 (Thompson et al., 1994), and then the alignment was refined by removing ambiguous gaps at both termini of the alignment and considering the conserved secondary structures.

A 50% majority-rule Bayesian inference (BI) tree was constructed with MrBayes version 3.1.2 (Ronquist & Huelsenbeck, 2003) using the Markov chain Monte Carlo (MCMC) algorithm under the GTR + I + G evolutionary model indicated by MRMODELTEST version 2 (Nylander, 2004). The chain length was 1 000 000 generations, with trees sampled every 100 generations. The first 250 000 generations were discarded as burn-in.

A maximum-likelihood (ML) tree was constructed with PAUP (version 4.0b10) (Swofford, 2002) using the TrN + I + G evolutionary model selected by MODELTEST (Posada & Crandall, 1998) and an input file created by performing an accelerated likelihood surface exploration (Nixon, 1999; Vos, 2003) with the program PAUPRat (Sikes & Lewis, 2001). A 50% majority-rule consensus ML tree was derived from the output of 200 trees generated by PAUP operating on the input file from PAUPRat.

RESULTS

SSU rRNA and alpha-tubulin gene sequences of *K. marina*

The SSU rRNA gene sequence of *K. marina* is 1754 nucleotides in length, with a G+C content of 43.9 mol%.

K. marina exhibits the highest sequence similarity to the stichotrichs (84.31–86.09%). The similarities to other groups are 84.47% to *Phacodinium*, 82.29–84.4% to oligotrichs, 81.94–84.68% to choreotrichs, 82.6–83.55% to *Protocruzia*, 79.92–81.73% to *Licinophora*, 78.59–85.6% to hypotrichs and 78.44–80.65% to heterotrichs.

The partial alpha-tubulin gene sequence obtained for *K. marina* is 1071 nucleotides in length, encoding 357 amino acids. The deduced alpha-tubulin amino acid sequence of *K. marina* shows 79.35–81.76% similarity to choreotrichs, 68.72–70.83% to hypotrichs, 67.74–76.25% to stichotrichs, 63.47–80.56% to oligotrichs and 60.01% to *Phacodinium*.

Morphogenetic features during binary fission (Fig. 1)

Fig. 1 documents the main stages of general cortical development during binary division of *K. marina*, which is characterized by numerous unique features (details will be published separately) that are not observed in any other known spirotrich: (i) no new undulating membranes (UM)-anlage in the opisthe is formed, hence the UM in the opisthe are derived from the division of the de-differentiated parental ones; (ii) no marginal cirral rows are formed; (iii) no typical DK are generated (i.e. several rows of pre-DK consisting of dikinetids with both basal bodies ciliated appear to mix with either isolated small cirri or cirral fragments); (iv) all cirral anlagen are formed interkinetally from the de-differentiated old cirral rows; and, (v) unlike all other known hypotrichs (*s. l.*), the differentiation of ciliature from the primordia occurs mostly after cell division. In addition, the general cirral structures on the ventral side are in a post-anlage pattern: except for the transverse cirri, all other cirri exhibit a primary arrangement (i.e. they are evenly distributed as if they had just been segregated from the anlagen).

Phylogenetic analyses using SSU rRNA gene sequences (Fig. 2)

Phylogenetic trees indicated that *Kiitricha* branches basally from the spirotrichous clade at a very deep level (Fig. 2). In our analyses, the spirotrichs are not a monophyletic taxon: armophorean genera separate *Protocruzia* species from the other spirotrichs. *Licinophora* is a basal lineage within the class Spirotrichea (Lynn & Strüder-Kypke, 2002). Associated with *Phacodinium*, *Kiitricha* branches at the base of the hypotrichs (*s. l.*) and represents a distinct clade from all other spirotrich taxa, with moderate bootstrap support (BI 78%, ML 76%, LS 72%, NJ 62%).

Bayesian analyses using alpha-tubulin gene sequences (Fig. 3)

The Bayesian tree for alpha-tubulin gene sequences supports the monophyly of the five classes *sensu* Lynn
The genus *Kiitricha* demonstrates a number of unique features that significantly separate it from other spirotrichs and may represent the type of a higher taxon; Shi *et al.* (1999) suggested the ‘suborder’ Protophytrichina.

Alignment of sequences clearly showed similarities in primary structure and G+C content of the SSU rRNA gene of *Kiitricha* to those of other ciliates. The G+C content (43.9 mol%) of the SSU rRNA gene of *K. marina* is in the same range as those of other ciliates (Elwood *et al.*, 1985; Sogin & Elwood, 1986; Schlegel *et al.*, 1991; Chen & Song, 2002; Li & Song, 2006). Thus, this aspect of the gene should not bias our phylogenetic analyses. In all our analyses of the SSU rRNA gene, *Kiitricha* grouped with other spirotrichs, switching positions with another unusual spirotrich genus, *Phacodinium*. Thus, there is no doubt that *Kiitricha* is a spirotrich.

Based on ultrastructural features and analyses of some gene sequences, particularly the SSU rRNA and large-subunit rRNA genes, Lynn & Small (1997) presented a revised classification of the phylum Ciliophora, which included 10 classes, 17 subclasses and 57 orders. The class Spirotrichea (1889) contained five subclasses (Protocruziidia, Hypotrichia, Choreotrichia, Oligotrichia and Stichotrichia) and four seds mutabilis orders (Armophorida, Clevelandellida, Phacodiniida and Odontostomatida). Shin *et al.* (2000) placed *Phacodinium* into the spirotrich clade based on its SSU rRNA gene sequence, justifying the establishment of the subclass Phacodiniida. Lynn & Strüder-Kypke (2002) added a seventh monotypic subclass to the spirotrichs when they recognized Licnophoria as the type for the subclass Licnophoria using SSU rRNA gene the base of the euplotid–stichotrich clade, with apokinetal stomatogenesis and differentiated cirri but lacking UM-anlage and differentiated marginal cirral rows (Fig. 4). Different from the arrangement suggested by Lynn & Small (2002), discocephalids group with sporadotrichs (i.e. *Stylonychia*, *Oxytricha* etc.) and diverge from the euplotid clade (i.e. *Aspidisca*, *Uronychia*, *Diophys* and *Euplotes*).
sequence analyses, and by confirming that its replication bands clearly demonstrated its affinities with the spirotrichs, but not heterotrichs.

The class Armophorea was suggested by Lynn (2003) as the first ‘ribo-class’ inferred from SSU rRNA gene sequence analyses and including the orders Armorphorida and Clevelandellida. Recently, Stoeck et al. (2007) have preliminary evidence that some odontostomatids may be related to the class Plagiopylea.

Lynn & Small (1997, 2002) placed Kiitricha in the subclass Hypotrichia Stein, 1859 and its family was the type for the hypotrich order Kiitrichida.

The genus Kiitricha, which is clustered basally within the spirotrich clade in all our analyses based on the SSU rRNA and alpha-tubulin gene sequences, represents a distinct clade, remotely related to all other typical spirotrichs (probably except Licnophora) and together with the oral de novo primordium (Song & Packroff, 1993; Song 2002: Kiitrichidae Nozawa, 1941 and Reichenowellidae Kahl, 1932.

In support of the removal of the kiitrichids from the subclass Hypotrichia, it is useful to review the morphogenetic features of typical euplotids. Euplotids are a monophyletic assemblage united by the following pattern of development of the infraciliature: (i) the FVT-cirri are formed apokinetally in a five-anlagen mode; (ii) marginal rows are present or reduced; (iii) both ventral and dorsal ciliatures have a very stable pattern; (iv) DK are clearly differentiated with typical dikinetids as seen in all other typical spirotrichs (probably except Licnophora) and (v) the UM-anlage in the opisthe is formed independently within a subcortical pouch together with the oral primordium (Song & Packroff, 1993; Song et al., 2004). Compared with these euplotid features, all characters revealed during morphogenesis in K. marina indicate that this organism should be a primitive form and totally isolated from euplotids and other known hypotrichs (s. l.).

Table 1. Autapomorphies considered in assessment of the phylogenetic position of Kiitricha

<table>
<thead>
<tr>
<th>Apomorph</th>
<th>Plesiomorph</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Stomatogenesis in apokinetal mode</td>
<td>Parakinetal mode</td>
</tr>
<tr>
<td>2. Cirri present and clearly differentiated</td>
<td>No cirri formed; somatic ciliature uniform and consisting of longitudinal rows of dikinetids</td>
</tr>
<tr>
<td>3. Semi-cirri* present in somatic ciliature</td>
<td>Uniform kinetics consisting of dikinetids</td>
</tr>
<tr>
<td>4. UM in the opisthe formed de novo and together with the oral primordium</td>
<td>No new anlage for UM is formed; it generates from division of the UM-anlage of the proter</td>
</tr>
<tr>
<td>5. Marginal rows clearly differentiated</td>
<td>Marginal rows not differentiated</td>
</tr>
<tr>
<td>6. First frontal cirrus formed from UM-anlage</td>
<td>No frontal cirrus formed from the UM-anlage</td>
</tr>
<tr>
<td>7. Basal bodies in DK in typical hypotrichous pattern</td>
<td>In heterotrichous pattern</td>
</tr>
<tr>
<td>8. Somatic ciliature highly reduced or degenerative</td>
<td>Developed or specialized, not degenerative</td>
</tr>
<tr>
<td>9. Both ciliature and body shape highly specialized, ectocommensal with adhesive disc</td>
<td>Generally non-specialized, non-commensal</td>
</tr>
<tr>
<td>10. Stomatogenesis in subapokinetal mode</td>
<td>In epi-apokinetal mode</td>
</tr>
<tr>
<td>11. Number of cirral streaks stable</td>
<td>Variable</td>
</tr>
<tr>
<td>12. Five-FVT-cirrus-anlagen mode</td>
<td>Non-five-cirrus-anlagen mode</td>
</tr>
<tr>
<td>13. Right marginal row absent</td>
<td>Present</td>
</tr>
<tr>
<td>14. DK formed in secondary pattern</td>
<td>In primary pattern</td>
</tr>
<tr>
<td>15. Silverline system often highly group-dependent</td>
<td>Non-specialized, non-group-dependent</td>
</tr>
<tr>
<td>16. Cirri in mid-ventral rows in zigzag pattern</td>
<td>Not in pattern, low level of organization</td>
</tr>
<tr>
<td>17. Cirri in most area stable in number</td>
<td>Mostly variable in number</td>
</tr>
</tbody>
</table>

*Concerns the somatic ciliature of longitudinal rows, in which monokinetids are formed in single-rowed fragments.
Hence, we conclude from both the molecular and morphological/morphogenetic data that the order Kiitrichida represents a distinct taxon within the class Spirotrichea and should be placed in the subclass Protohypotrichia. Indeed, an expanded investigation of the order Kiitrichida is now needed to determine whether the other families and genera assigned to this taxon are properly placed.

ACKNOWLEDGEMENTS

This work was supported by the Nature Science Foundation of China (project numbers 40676078 and 30670280; awarded to W. S. and Z. C.) and the Natural Sciences and Engineering Research Council of Canada (awarded to D. H. L.).

REFERENCES

Shin, M. K., Hwang, U. W., Kim, W., Wright, A.-D. G., Krawczyk, C. & Lynn, D. H. (2000). Phylogenetic position of the ciliates Phacodinium (order Phacodiniida) and Protocruzia (subclass Protocruzidiida) and...

Sikes, D. S. & Lewis, P. O. (2001). PAUPRat. A tool to implement parsimony and likelihood ratchet searches using PAUP*. Distributed by the authors. Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA.

