Proposal of Sinomonas flava gen. nov., sp. nov., and description of Sinomonas atrocyanea comb. nov. to accommodate Arthrobacter atrocyaneus

Yu Zhou,1,2 Wei Wei,1 Xu Wang1 and Ren Lai1,3

1Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Life Sciences College of Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
2Quality and Standards Institute of Agricultural Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China
3Biotoxin Department of Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, PR China

A novel actinomycete strain, designated CW 108 T, was isolated from a forest soil in Anhui Province, China. The cells were strictly aerobic, non-motile, bent rods. The strain grew optimally at 30–37 °C and pH 6.0–8.0. Chemotaxonomically, the peptidoglycan type was A3a, the cell-wall sugars contained galactose, mannose and ribose, the polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol and phosphatidylmonomethylethanolamine, the major fatty acids were ai-C15:0, i-C15:0 and ai-C17:0 and the predominant respiratory quinone was MK-9(H2), with a moderate amount of MK-8(H2) and a minor amount of MK-6(H2). The G+C content of the genomic DNA was 71.1 mol%. Phylogenetic analysis showed that strain CW 108 T formed a deeply separated lineage in the family Micrococcaceae with Arthrobacter atrocyaneus DSM 20127 T. The 16S rRNA gene sequence similarity between strain CW 108 T and Arthrobacter atrocyaneus DSM 20127 T was 99.4%; sequence similarities between these strains and representatives of other species in the family Micrococcaceae with validly published names were lower than 95.2%. DNA–DNA hybridization showed a level of relatedness of 52.2% between the two neighbours. Based on the results of our polyphasic taxonomic study, strain CW 108 T and Arthrobacter atrocyaneus DSM 20127 T should be assigned to two different species of a novel genus within the family Micrococcaceae, for which the names Sinomonas flava gen. nov., sp. nov. and Sinomonas atrocyanea comb. nov. are proposed. The type strain of Sinomonas flava is CW 108 T (=LMG 24447 T =KCTC 19388 T =CCTCC AB 207194 T) and the type strain of Sinomonas atrocyanea is DSM 20127 T =JCM 1329 T =CGMCC 1.1891 T =ATCC 13752 T .
a novel genus and that the two strains should be assigned to two separate species of the new genus.

To investigate morphological, biochemical and physiological characteristics, strains were routinely cultivated using TYB and PYES media at 30 °C. Unless otherwise indicated, phenotypic characteristics were studied using standard procedures (Smibert & Krieg, 1994; Zhou et al., 2007). The morphological characteristics of strain CW 108T were observed by light microscopy (model XTL-3400; Olympus) and transmission electron microscopy (model H-7650; Hitachi) after incubation for 2 days at 30 °C on PYES agar. Electron microscopy preparations were performed as described by Yoon et al. (2003). For the various physiological tests, API 20 NE and API 50 CHB test strips (bioMérieux) were applied according to the manufacturer's instructions.

PCR amplification of the 16S rRNA gene was performed as described by Li et al. (2007). 16S rRNA gene sequences were aligned manually with reference sequences retrieved from the GenBank database following BLAST searches. Phylogenetic trees were constructed using the software package MEGA version 3.1 (Kumar et al., 2004) after multiple alignment of the data by CLUSTAL X (Thompson et al., 1997). Distances (distance options according to Kimura’s two-parameter model; Kimura, 1980, 1983) and clustering were based on the neighbour-joining and maximum-parsimony methods. Bootstrap analysis was used to evaluate the topology of the neighbour-joining tree by performing 1000 resamplings (Felsenstein, 1985).

Genomic DNA was prepared for determination of the base composition and DNA–DNA hybridization following the procedure of Marmur (1961). The DNA G+C base content was determined by reversed-phase HPLC according to Mesbah et al. (1989) using the strain Escherichia coli DH5α as a control. DNA–DNA hybridizations were carried out by applying optical renaturation methods (Jahnke, 1992; Hülse et al., 1983; De Ley et al., 1970). DNA–DNA hybridizations were performed on CW 108T with reference strain DSM 20127T in five replicates. Procedures for identification of cell-wall amino acids and sugars followed those described by Staneck & Roberts (1974). Polar lipids were extracted, examined by two-dimensional TLC and identified using the procedures of Minnikin et al. (1984). Respiratory quinones were extracted from lyophilized cells and samples were purified and analysed by HPLC using the procedures reported by Hu et al. (2001). Cellular fatty acid composition analysis was performed as described by Sassar (1990) using the Microbial Identification System (MIDI, Inc.). The fatty acid profile of strain CW 108T contained C14:0 (1.3 %), i-C15:0 (30.6 %), ai-C15:0 (35.9 %), i-C16:0 (1.9 %), C16:0 (4.3 %), i-C17:0 (3.2 %), ai-C17:0 (15.4 %), C18:0 (2.2 %) and summed feature 3 (C16:1ω6c and/or C16:1ω7c) 1.0 %, and that of strain DSM 20127T contained i-C14:0 (1.4 %), i-C15:0 (13.9 %), ai-C15:0 (36.3 %), i-C16:0 (7.2 %), C16:0 (16.6 %), i-C17:0 (6.0 %), ai-C17:0 (30.2 %) and C18:0 (1.0 %)

Strains CW 108T and DSM 20127T showed good growth on PYES and TYB media and moderate growth was observed on Luria–Bertani agar (Oxoid). Obvious growth occurred even at 42 °C for CW 108T. Cells of CW 108T were non-motile, bent rods (0.5–0.9 μm wide and 1.7–4.5 μm long) (Supplementary Fig. S1, available in IJSEM Online). The morphological and physiological characteristics described above are significantly different from those of members of the closely related genera Citricoccus and Micrococcus. Other physiological and biochemical properties are detailed in the species description.

Almost-complete 16S rRNA gene sequences of the two strains (1385 bp for CW 108T and 1404 bp for DSM 20127T) were determined. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain CW 108T clearly belongs to the family Micrococcaceae and formed a deeply separated monophyletic cluster with Arthrobacter atrocyaneus DSM 20127T in the phylogenetic trees (Fig. 1 and Supplementary Fig. S2). 16S rRNA gene sequence similarity between strain CW 108T and DSM 20127T was 99.4 %. The two strains showed moderate or low 16S rRNA gene sequence similarity to all other described members of the related genera Citricoccus, Micrococcus, Zhihengliuella, Arthrobacter, Acaricomtes and Renibacterium (the maximum similarity, of 95.2 %, was between Arthrobacter atrocyaneus DSM 20127T and Citricoccus alkali tolerant YIM 70010T). The two strains shared the same 16S rRNA gene signature nucleotides and most signature nucleotides of the two strains match those of the family Micrococcaceae (Stackebrandt et al., 1997), except at positions 640, 839, 847, 1025, 1036 and 1278 (E. coli numbering), where the nucleotides U, A, U, C, G and U were replaced by G, C, G, C, U, C and C, respectively.

The DNA G+C contents of strains CW 108T and DSM 20127T were 71.1 and 70.3 mol%. The respiratory quinone system of the two strains consisted of MK-9(H2) and MK-8(H2) (7:1), and strain CW 108T contained MK-6(H2) (<4.6 %) as a minor component. The major fatty acids of the two strains were ai-C15:0, i-C15:0 and ai-C17:0. The polar lipids consisted of diphosphatidylglycerol, phosphatidyglycerol, phosphatidylglycerol and phosphatidylmonomethyllethanamine (Supplementary Fig. S3). The polar lipid pattern of CW 108T is significantly simpler than those detected in related genera of the family Micrococcaceae (Zhang et al., 2007; Pukall et al., 2006; Wieser et al., 2002; Altenburger et al., 2002; Sanders & Fryer, 1980). Strain CW 108T lacks dianaminopimelic acid in the cell-wall hydrolysate. The amino acids Lys, Ala, Glu and Gly were detected in a molar ratio of 1:3.5:1:0.2 in peptidoglycan of strain CW 108T. These results suggest that the new isolate showed peptidoglycan type A3z, which is consistent with the peptidoglycan type reported for strain DSM 20127T (Koch et al., 1995; Schleifer & Kandler, 1972). The cell-wall sugars for CW 108T were galactose, mannose and ribose. DNA–DNA relatedness between strain CW 108T and strain DSM 20127T is 52.2 %, which confirmed that the two strains should be allocated to two different species of the same
genus. Chemotaxonomic characteristics that differentiate the newly proposed genus Sinomonas gen. nov. from related genera in the family Micrococcaceae are given in Table 1.

Although phylogenetic analysis and signature nucleotides supported the conclusion that the new isolate and strain DSM 20127T were members of the family Micrococcaceae, the two strains showed moderate distinctions of chemotaxonomic features and differentiating physiological characteristics from related genera in their major fatty acids, respiratory quinones, polar lipids, cell-wall sugars and mesophilic growth. On the basis of a comparison of our phylogenetic and chemotaxonomic results together with phenotypic characteristics determined in this study and other references reported for Arthrobacter atrocyaneus DSM 20127T (Yamada & Komagata, 1972; Interschick et al., 1970), a new genus Sinomonas gen. nov. is proposed to house strain DSM 20127T and the new isolate CW 108T. The signature nucleotide results for strains DSM 20127T and CW 108T also supported the placement of the two isolates in a new genus. The name Sinomonas flava gen. nov., sp. nov. is proposed for the newly isolated strain CW 108T, and Arthrobacter atrocyaneus DSM 20127T is reclassified as Sinomonas atrocyanea comb. nov.

Description of Sinomonas gen. nov.

Sinomonas (Si.no.mo’nas. M.L. n. Sina China; L. fem. n. monas a unit, monad; N.L. fem. n. Sinomonas a monad from China).

Cells strain Gram-positive or variable and are aerobic, mesophilic rods (or show a rod–coccus cycle). Weak catalase activity is present and oxidase activity is absent. The major fatty acids are ai-C15 : 0, i-C15 : 0 and ai-C17 : 0. The respiratory quinone system consists of MK-9(H2) and MK-8(H2) in a molar ratio of about 7:1. Polar lipids consist of diphosphatidylglycerol, phosphatidylglycerol and phosphatidylinositol and a minor amount of phosphatidylmonomethylethanolamine. The peptidoglycan type is A3α and cell-wall sugars are galactose, mannose and ribose. The DNA G+C content is about 71 mol%. The type species is Sinomonas flava.

The following properties are displayed in addition to those given in the genus description. Cells strain Gram-positive and are non-motile, bent rods (0.5–0.9 × 1.7–4.5 μm). Colonies are circular, convex and pale yellow-coloured after 2 days cultivation at 30–37 °C on TYB, YDC or PYES media. Growth occurs at 15–42 °C (optimum 30–37 °C) and pH 5.0–9.0 (optimum pH 6.0–8.0). No dark-blue pigment is produced on YDC agar at 30 °C (Supplementary Fig. S4). Growth occurs with 0–3 % NaCl, but does not occur with 4 % NaCl. Displays the following results in API 20NE tests: Tween 80 is hydrolysed but casein, starch, and tyrosine are not hydrolysed; urease, β-galactosidase and lipase activities are present; arginine dihydrolase, tryptophan decarboxylase, ornithine decarboxylase and lysine decarboxylase activities are absent; nitrate is reduced and nitrite is not reduced; citrate is not utilized and gelatin is not hydrolysed; H2S is not produced; the Voges–Proskauer test is positive; indole is not produced. Displays the following results in API 50CHB tests: aesculin, cellobiose, erythritol, D-fructose, D-glucose, glycerol, inositol, 2-ketoglutarate, maltose, D-mannose, mannitol, melezitose, methyl β-D-xyloside, D-ribose, sorbitol, sucrose and turanose are utilized as sole carbon sources; N-acetylglucosamine, D-adonitol, amygdalin, D-and L-arabitol, D- and L-arabinose, arbutin, dulcitol, D-
Table 1. Characteristics that differentiate *Sinomonas* gen. nov. from related genera in the family Micrococcaceae

<table>
<thead>
<tr>
<th>Genus</th>
<th>Peptidoglycan type</th>
<th>DNA G+C content (mol%)</th>
<th>Polar lipids</th>
<th>Major fatty acids</th>
<th>Cell wall sugars</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sinomonas atrocyanea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthrobacter atrocyaneus (Kuhn and Starr 1960).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The type strain is DSM 20127T (=LMG 24447T =KCTCC 19388T =CCTCC AB 207194T), which was isolated from the surface layer of a forest soil in Anhui Province, China. The DNA G+C content of the type strain is 71.1 mol% (HPLC).

Description of Sinomonas atrocyanea (Kuhn and Starr 1960) comb. nov.

Sinomonas atrocyanea [at’ro.cy’a.ne.a. L. fem. adj. *atro* black; N.L. fem. adj. *cyanea* dark blue; N.L. fem. adj. *atrocyanea* (sic) dark blackish blue, referring to the dark-blue pigment produced under certain conditions].

Cells show aerobic and mesophilic growth. Gram staining is variable at different growth stages. Morphological characteristics (colony colour, rod–coccus cycle for cell morphology, mobility, etc.) are variable at different growth stages or under different cultural conditions. Colonies are circular, convex and grey–white after cultivation for 2 days at 37 °C on TYB or PYES media. Dark-blue pigment is produced on YDC agar at 30 °C. Displays the following results in API 20NE tests: urease and β-galactosidase are present; arginine dihydrolase, tryptophan decarboxylase, ornithine decarboxylase and lysine decarboxylase activities are absent; nitrate is reduced but nitrite is not reduced; citrate is not utilized and gelatin is not hydrolysed; H₂S is not produced; the Voges–Proskauer test is positive; indole is not produced; glucose, inositol, rhamnose and sucrose are utilized; amygdalin, D- and L-arabinose, mannose, melibiose and sorbitol are not utilized. The fatty acid profile contains ai-C₁₅:₀, ai-C₁₇:₀, i-C₁₆:₀, i-C₁₅:₀ and summed feature 3 (C₁₆:₀H₆c and/or C₁₆:₁H₇c).

The type strain is DSM 20127T =JCM 1329T =CGMCC 1.1891T =ATCC 13752T. The DNA G+C content of the type strain is 70.3 mol% (HPLC).

Acknowledgements

The authors are grateful to Professor Wen-Jun Li of Yunnan Institute of Microbiology and Yunnan University for technical support and Mr Bing Hu and Ziyi He of the Electron Microscope Demonstrating Co. lab of Nanjing Agricultural University for technological assistance in morphology observation. This work was supported by grants from the National Natural Science Foundation of China (project no. 30600001) and the Jiangsu Natural Science Foundation (BK200542).

Description of Sinomonas atrocyanea (Kuhn and Starr 1960) comb. nov.

Sinomonas atrocyanea [at’ro.cy’a.ne.a. L. fem. adj. *atro* black; N.L. fem. adj. *cyanea* dark blue; N.L. fem. adj. *atrocyanea* (sic) dark blackish blue, referring to the dark-blue pigment produced under certain conditions].

Cells show aerobic and mesophilic growth. Gram staining is variable at different growth stages. Morphological characteristics (colony colour, rod–coccus cycle for cell morphology, mobility, etc.) are variable at different growth stages or under different cultural conditions. Colonies are circular, convex and grey–white after cultivation for 2 days at 37 °C on TYB or PYES media. Dark-blue pigment is produced on YDC agar at 30 °C. Displays the following results in API 20NE tests: urease and β-galactosidase are present; arginine dihydrolase, tryptophan decarboxylase, ornithine decarboxylase and lysine decarboxylase activities are absent; nitrate is reduced but nitrite is not reduced; citrate is not utilized and gelatin is not hydrolysed; H₂S is not produced; the Voges–Proskauer test is positive; indole is not produced; glucose, inositol, rhamnose and sucrose are utilized; amygdalin, D- and L-arabinose, mannose, melibiose and sorbitol are not utilized. The fatty acid profile contains ai-C₁₅:₀, ai-C₁₇:₀, i-C₁₆:₀, i-C₁₅:₀ and summed feature 3 (C₁₆:₀H₆c and/or C₁₆:₁H₇c).

The type strain is DSM 20127T =JCM 1329T =CGMCC 1.1891T =ATCC 13752T. The DNA G+C content of the type strain is 70.3 mol% (HPLC).

Acknowledgements

The authors are grateful to Professor Wen-Jun Li of Yunnan Institute of Microbiology and Yunnan University for technical support and Mr Bing Hu and Ziyi He of the Electron Microscope Demonstrating Co. lab of Nanjing Agricultural University for technological assistance in morphology observation. This work was supported by grants from the National Natural Science Foundation of China (project no. 30600001) and the Jiangsu Natural Science Foundation (BK200542).
References

