Aidingimonas halophila gen. nov., sp. nov., a moderately halophilic bacterium isolated from a salt lake

Yun Wang,1† Shu-Kun Tang,2† Kai Lou,1 Jae- Chan Lee,3 Che Ok Jeon,4 Li-Hua Xu,2 Chang-Jin Kim3 and Wen-Jun Li2

1Xinjiang Institute of Microbiology, Xinjiang Academy of Agricultural Science, Urumqi, Xinjiang 830091, PR China
2The Key Laboratory for Microbial Resources of Ministry of Education and Laboratory for Conservation and Utilization of Bio-resources, Yunnan Institute of Microbiology, Yunnan University, Kunming 650091, PR China
3Korea Research Institute of Bioscience and Biotechnology, 52 Oeundong, Yusong, Daejeon 305-333, Republic of Korea
4Department of Life Science, Chung-Ang University, Seoul 156-756, Republic of Korea

Correspondence
Wen-Jun Li
wjli@ynu.edu.cn
Chang-Jin Kim
changjin@kribb.re.kr

Two Gram-negative, facultatively anaerobic, catalase-positive, oxidase-negative, non-motile, rod-shaped and moderately halophilic bacterial strains, designated YIM 90637T and BH 017, were isolated from a salt lake in Xinjiang province, north-west China, and subjected to a polyphasic taxonomic study. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the two novel isolates were affiliated with the family Halomonadaceae; the two strains shared 100% sequence similarity, but showed similarities of 94.7% with the type strain of Modicisalibacter tunisiensis, 93.2–94.7% with members of the genus Chromohalobacter, 93.2–95.0% with members of the genus Halomonas and less than 92.0% with other members of the family Halomonadaceae. However, DNA–DNA relatedness data and phenotypic properties demonstrated that strains YIM 90637T and BH 017 were representatives of the same species. The major fatty acids were C19:0 cyclo ω8c and C16:0. The relative amount of C19:0 cyclo ω8c was notably higher than that found in most species of the family Halomonadaceae for which fatty acid composition has been determined. The genomic DNA G+C content was 57.2–57.5 mol% and the only respiratory quinone was ubiquinone 9. Based on evidence from the polyphasic taxonomic study, it was concluded that the two strains should be classified as representatives of a novel species in a new genus, for which name Aidingimonas halophila gen. nov., sp. nov. is proposed; the type strain of Aidingimonas halophila is YIM 90637T (=KCTC 12885T=CCTCC AB 207002T).

The family Halomonadaceae was first proposed on the basis of results obtained with the 16S rRNA cataloguing technique (Franzmann et al., 1988). The family Halomonadaceae belongs to the class Gammaproteobacteria and, at the time of writing, included four genera of halophilic bacteria (Halomonas, Chromohalobacter, Modicisalibacter and Cobetia) and three genera of non-halophilic bacteria (Zymobacter, Halotala and Carnimonas) (Okamoto et al., 1993; Dobson & Franzmann, 1996; Mata et al., 2002; Ventosa et al., 1998; Ben Ali Gam et al., 2007; Ntougias et al., 2007). Halomonas is the largest genus in the family Halomonadaceae and currently comprises more than 50 species. More than half of the taxa in the family Halomonadaceae have been reclassified because of their heterogeneous features (Franzmann et al., 1988; Mellado et al., 1995; Dobson & Franzmann, 1996; Arahal et al., 2002a, b) and the description of the family has been emended three times (Dobson & Franzmann, 1996; Ntougias et al., 2007; Ben Ali Gam et al., 2007). Nevertheless, the taxonomic status of some taxa, e.g. Cobetia marina, Halomonas marisflavi, Halomonas indali- nina, Halomonas avicenniae and Halomonas salaria, is still

†These authors contributed equally to this work.

The GenBank/EMBL/DDBJ accession numbers for the 16S rRNA gene sequences of strains YIM 90637T and BH 017 are FJ418176 and EU191906, respectively.

The polar lipid composition of strain YIM 90637T and the cellular fatty acid profiles of strains YIM 90637T and BH 017 are available as supplementary material with the online version of this paper.

International Journal of Systematic and Evolutionary Microbiology (2009), 59, 3088–3094 DOI 10.1099/ijs.0.010264-0
in doubt (Kim et al., 2007). In this paper, two novel bacterial strains, designated YIM 90637 T and BH 017, are described and their morphological, physiological, chemotaxonomic and phylogenetic characteristics are identified. Due to their unique taxonomic position, it is concluded that the two isolates represent a novel species in a new bacterial genus in the family Halomonadaceae.

The two strains were isolated from sediment samples taken from Aiding Lake, which is situated in the southern part of the Turpan Basin in Xinjiang Uygur Autonomous Region, north-west China, about 40 km south of the city of Turpan. Aiding Lake is a salt lake with an area of 124 km² and, at 155 m below sea level, is the lowest place in China and the second lowest place in the world, next only to the Dead Sea. The mineral content of the water is as high as 200 g l⁻¹ due to many years of strong evaporation. The major ions are (mg l⁻¹) Na⁺ (127764.8), K⁺ (529.1), Ca²⁺ (151.9), Mg²⁺ (597.8), CI⁻ (177529.5), SO₄²⁻ (29635.2) and HCO₃⁻ (200.1). Strain YIM 90637 T was isolated by the dilution plating method on cellulose-casein-multisalts medium described by Tang et al. (2008), whereas strain BH 017 was isolated on marine agar 2216 (MA; Difco) with the addition of 8% (w/v) NaCl (final NaCl concentration 9.94%, w/v). The two strains were maintained on modified ISP 2 agar (Shirling & Gottlieb, 1966) slants containing 10% NaCl (w/v) at 4°C and as 20% (w/v) glycerol suspensions at -20°C. The modified ISP 2 medium contained (per l distilled water) 4 g yeast extract, 10 g malt extract, 4 g glucose, 100 g NaCl and 15 g agar. The medium was adjusted to pH 7.0. Biomass for chemical and molecular studies was obtained by cultivation in shaken flasks (about 150 r.p.m) using ISP 2 medium supplemented with 10% NaCl at 37°C for about a week.

Gram staining was carried out by the standard Gram reaction and was confirmed by using the KOH lysis test method (Cerny, 1978). Morphology was examined by transmission electron microscopy with a model H-800 transmission electron microscope (Hitachi) using cells from exponentially growing cultures. Motility was observed both on modified ISP 2 medium with 0.3% agar under high-moisture conditions and in a hanging-drop preparation under an oil-immersion objective. Accumulation of poly-β-hydroxybutyrate was determined by the Sudan black staining method under a light microscope (Smibert & Krieg, 1994). Colony morphology was observed on modified ISP 2 medium containing 10% NaCl after incubation at 37°C for 7 days. Growth at various temperatures (0, 4, 10, 15, 20, 28, 30, 37, 40, 45, 50 and 55°C) was tested on modified ISP 2 medium containing 10% NaCl. The pH range for growth was investigated between pH 4.0 and 10.0 (at intervals of 1.0 pH unit) using the buffer system described by Xu et al. (2005). Liquid cultures were cultivated in tubes at 37°C for 2–3 weeks using modified ISP 2 containing 10% NaCl as the basal medium. Growth at various salt concentrations [0–30% NaCl (w/v) at intervals of 1%] was tested by using ISP 2 without any added salts as the basal medium. Catalase activity was determined by production of bubbles after the addition of a drop of 3% H₂O₂. Oxidase activity was observed by oxidation of tetramethyl-p-phenylenediamine. Reduction of nitrate, the methyl red and Voges–Proskauer tests and hydrolysis of aesculin, gelatin, casein, starch and Tween 20, 40, 60 and 80 were determined as described by Cowan & Steel (1965). Metabolic properties and enzyme activities were determined by means of the API 20NE, API 20E, API 50CHB and API ZYM systems (bioMérieux) according to the manufacturer’s instructions. Utilization of organic substrates was tested using Biolog GN2 microplates. Strains were prepared using pre-warmed sterile saline medium (10% NaCl), within the density range specified by the manufacturer. Antibiotic susceptibility was determined on agar using the disc diffusion method (Reva et al., 1995). Anaerobic growth experiments were performed in ISP 2 medium supplemented with 0.15 mM nitrate and 0.035 mM nitrite using the GasPak Anaerobic system (BBL) according to the manufacturer’s instructions. Phenotypic, chemotaxonomic and phylogenetic features of the two strains were compared with those of members of related genera of the family Halomonadaceae; data are shown in Table 1.

For fatty acid analysis, strains YIM 90637 T and BH 017 were cultured on tryptic soy agar (Difco) containing 10% NaCl at 37°C for 48 h and GC was performed as described by Sassar (1990) using the Microbial Identification system (MIDI). Isoprenoid quinones were extracted and purified as described by Komagata & Suzuki (1987). The purified ubiquinone was dissolved in acetone and separated by reversed-phase HPLC. Polar lipids were extracted, examined by two-dimensional TLC and identified using published procedures (Minnikin et al., 1984). Levels of DNA–DNA relatedness were determined according to the optical renaturation method (De Ley et al., 1970; Huß et al., 1983; Jahnke, 1992), DNA–DNA hybridization was performed in triplicate.

Extraction of genomic DNA and PCR amplification of the 16S rRNA gene were done as described by Li et al. (2007). The obtained sequences were compared with reference 16S rRNA gene sequences retrieved from GenBank and EMBL by BLAST searching and similarity searches were performed using the EzTaxon server (http://147.47.212.35:8080; Chun et al., 2007). Multiple alignments and calculations of sequence evolutionary distances were carried out using CLUSTAL_X (Thompson et al., 1997) software. Gaps at the 5’ and 3’ ends of the alignment were omitted from further analysis. Phylogenetic analyses were performed using three tree-making algorithms, the neighbour-joining (Saitou & Nei, 1987), maximum-likelihood (Felsenstein, 1981) and maximum-parsimony (Fitch, 1971) methods. A phylogenetic tree was constructed using the neighbour-joining method using MEGA version 4.0 (Tamura et al., 2007). The topology of the phylogenetic tree was evaluated by the bootstrap resampling method with 1000 replicates (Felsenstein, 1985). Genomic DNA for determination of the G+C contents of strains YIM 90637 T and BH 017 was
Table 1. Selected characteristics that differentiate members of the genus *Aidingimonas* gen. nov. from those of related genera in the family *Halomonadaceae*

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell length (µm)</td>
<td>0.7–1.5</td>
<td>0.6–1.9</td>
<td>0.6–4.0</td>
<td>0.6–4.2</td>
<td>1.6–4.0</td>
<td>0.7–2.4</td>
<td>ND</td>
<td>0.5–1.7</td>
</tr>
<tr>
<td>Cell morphology</td>
<td>Straight rods</td>
<td>Straight or curved rods or coccoid</td>
<td>Straight rods</td>
<td>Straight or curved rods</td>
<td>Straight rods</td>
<td>Rods with rounded ends</td>
<td>ND</td>
<td>Straight or curved rods</td>
</tr>
<tr>
<td>Colour</td>
<td>Colourless to yellow brown</td>
<td>White or yellow</td>
<td>Cream</td>
<td>White, yellow or brown</td>
<td>Cream</td>
<td>Milky white</td>
<td>Pale yellow</td>
<td>White</td>
</tr>
<tr>
<td>Motility</td>
<td>–</td>
<td>V</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>Oxygen relationship</td>
<td>Aerobic</td>
<td>Facultatively anaerobic</td>
<td>Facultatively anaerobic</td>
<td>Facultatively anaerobic</td>
<td>Facultatively anaerobic</td>
<td>Facultatively anaerobic</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Oxidase test</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Ranges for growth</td>
<td>NaCl (% w/v)</td>
<td>1–25</td>
<td>0–32.5</td>
<td>1–25</td>
<td>0–30</td>
<td>0.5–20</td>
<td>ND</td>
<td>0–15</td>
</tr>
<tr>
<td>Temperature (°C)</td>
<td>10–45</td>
<td>4–45</td>
<td>4–45</td>
<td>0–45</td>
<td>10–42</td>
<td>15–37</td>
<td>5–45</td>
<td>ND</td>
</tr>
<tr>
<td>pH</td>
<td>5–9</td>
<td>4.5–10</td>
<td>5–10</td>
<td>5–10</td>
<td>4.7–8.1</td>
<td>5–11</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>Nitrate reduction</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Gelatin liquefaction</td>
<td>–</td>
<td>V</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Enzyme activities</td>
<td>Urease</td>
<td>Arginine dihydrolase</td>
<td>Ornithine decarboxylase</td>
<td>Lysine decarboxylase</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Hydrolysis of:</td>
<td>Starch</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>ND</td>
<td>–</td>
</tr>
<tr>
<td>Utilization as sole carbon source of:</td>
<td>L-Arabinose</td>
<td>Citrate</td>
<td>Maltose</td>
<td>D-Ribose</td>
<td>Xyitol</td>
<td>D-Mannose</td>
<td>L-Lysine</td>
<td>L-Phenylalanine</td>
</tr>
<tr>
<td>Major respiratory quinone</td>
<td>Q-9</td>
<td>Q-9</td>
<td>Q-9</td>
<td>Q-9</td>
<td>Q-9</td>
<td>–</td>
<td>ND</td>
<td>–</td>
</tr>
<tr>
<td>Polar lipids</td>
<td>DPG, PE, PI, PIM, 2PL, 2PGL, GL</td>
<td>DPG, PG, PE, 1PL</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>DPG, PE, 3PL</td>
</tr>
<tr>
<td>DNA G+C content (mol%)</td>
<td>57–58</td>
<td>52–68</td>
<td>53.7</td>
<td>56–66</td>
<td>62–64</td>
<td>55–56</td>
<td>64.4</td>
<td>56</td>
</tr>
</tbody>
</table>

DPG, Diphostatidglycerol; GL, unknown glycolipid; PE, phosphatidylethanolamine; PG, phosphatidylglycerol; PGL, unknown phosphoglycolipid; PI, phosphatidylinositol; PIM, phosphatidylinositol mannoside; PL, unknown phospholipid.
prepared according to the method of Marmur (1961); DNA G+C contents were determined by reversed-phase HPLC (Mesbah et al., 1989).

Morphological, cultural, physiological and biochemical characteristics of strains YIM 90637T and BH 017 are given in the genus and species descriptions and shown in Table 1. Comparative 16S rRNA gene sequence analyses revealed that strains YIM 90637T and BH 017 shared 100% sequence similarity and were most closely related to members of the family Halomonadaceae. Strains YIM 90637T and BH 017 exhibited a DNA–DNA relatedness value of 76.5%, which is higher than the 70% cut-off point recommended for assignment of strains to the same genomic species, indicating that the two strains represent one unique species (Wayne et al., 1987). In view of their phenotypic, phylogenetic and genetic similarities, strains YIM 90637T and BH 017 are representatives of the same species.

In addition, as shown in Table 1, several phenotypic and physiological characteristics can be used to differentiate strains YIM 90637T and BH 017 from related genera in the family Halomonadaceae. Strains YIM 90637T and BH 017 can be distinguished clearly from their closest phylogenetic relative, members of the genus Modicisalibacter, by their lack of motility, citrate utilization, urease activity, and utilization of citrate, lactose, maltose, d-ribose, xylitol and d-mannose. Strains YIM 90637T and BH 017 differ from the members of the genus Chromohalobacter in terms of motility and urease activity. The oxidade reaction distinguished strains YIM 90637T and BH 017 clearly from members of the genus Halomonas. Strains YIM 90637T and BH 017 could also be distinguished from Cobetia strains by their ability to reduce nitrate and utilize citrate, lactose, maltose and mannose and their inability to hydrolyse casein. In summary, strains YIM 90637T and BH 017 showed distinctive phenotypic and physiological features when compared with their closest relatives, i.e. members of the genus Modicisalibacter and other genera in the family Halomonadaceae (Table 1).

Strains YIM 90637T and BH 017 had cellular fatty acid profiles that contained large amounts of straight-chain, unsaturated fatty acids. The major components (>10% of total fatty acids) were C19:0 cyclo ω8c and C16:0 (see Supplementary Table S1 in IJSEM Online). The profiles were similar to those of the type strains of previously described species belonging to the genera Modicisalibacter, Chromohalobacter, Halomonas and Cobetia, confirming the position of these strains in the family Halomonadaceae (Yoon et al., 2002; Pęcone et al., 2006). However, the relative amount of C19:0 cyclo ω8c was notably higher than that observed in most species of the family Halomonadaceae. Moreover, some species of the genera Halomonas, Carnimonas and Zymobacter do not possess C19:0 cyclo ω8c. C16:1ω7c is the major fatty acid in members of the genera Modicisalibacter and Cobetia, but was not found in strains YIM 90637T and BH 017. In summary, the fatty acid profiles of strains YIM 90637T and BH 017 differed from those of other members of the family Halomonadaceae, which supports the assignment of these strains to a new genus. The polar lipids of strains YIM 90637T and BH 017 comprised diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, phosphatidylglycerol mannosides, two unknown phospholipids, two unknown phosphoglycolipids and one unknown glycolipid. The DNA G+C contents of strains YIM 90637T and BH 017 were 57.5 and 57.2 mol%, respectively, which fall within the range given for species of the family Halomonadaceae (52.0–74.6 mol%).

Almost-complete 16S rRNA gene sequences were determined for strains YIM 90637T and BH 017 and the result of alignments showed that they had highest 16S rRNA gene sequence similarity to members of the family Halomonadaceae. In a phylogenetic tree based on the neighbour-joining algorithm, strains YIM 90637T and BH 017 formed a distinct phylogenetic lineage within the family Halomonadaceae and clustered with the type strain of Modicisalibacter tunisiensis (Fig. 1). 16S rRNA gene sequence similarity between strains YIM 90637T and BH 017 and members of genera within the family Halomonadaceae was as follows: 94.7% to Modicisalibacter tunisiensis LIT2T, 93.2–94.7% to members of the genus Chromohalobacter, 93.2–95.0% to members of the genus Halomonas, 91.3% to Cobetia marina DSM 4741T, 89.8% to Zymobacter palmae T109T, 90.8% to Halotalea alkalilenta AW-2T, and 90.0% to Carnimonas nigricans CTCBS1T. This low level of sequence similarity indicated that strains YIM 90637T and BH 017 could be assigned to a new genus that was, phylogenetically, as distant from the genus Halomonas as from the genera Chromohalobacter and Modicisalibacter. Topologies of phylogenetic trees constructed using the maximum-likelihood and maximum-parsimony algorithms were similar to that of the tree constructed by neighbour-joining analysis (data not shown).

According to the 16S rRNA signature nucleotides that are characteristic of the family Halomonadaceae given in the emended description of Ben Ali Gam et al. (2007), strains YIM 90637T and BH 017 possessed all 18 characteristic bases at positions 484 (A), 486 (C), 640 (A), 660 (A), 668 (A), 669 (A), 737 (U), 738 (U), 745 (U), 776 (U), 1124 (U or G), 1297 (U), 1298 (C), 1423 (A), 1424 (C), 1439 (U), 1462 (A) and 1464 (C). These 16S rRNA signature nucleotides were all present in the sequence of Modicisalibacter tunisiensis LIT2T. However, there was at least one base position that differed from those of other genera in the family Halomonadaceae. When the sequences of positions 61–106 (including positions 76–93) were folded using the standard conditions of the RNA structure program (version 4.2), members of the genera Carnimonas, Chromohalobacter, Cobetia and Modicisalibacter formed a 6 bp stem, whereas members of the genera Zymobacter and Halotalea and strains YIM 90637T and BH 017 formed a 7 bp stem (data not shown).
On the basis of chemotaxonomic, phylogenetic and phenotypic differences between the two isolates and their closest neighbours in the family Halomonadaceae, it is proposed that strains YIM 90637T and BH 017 represent a novel species in a new genus in the family Halomonadaceae for which the name Aidingimonas halophila gen. nov., sp. nov. is proposed.

Description of Aidingimonas gen. nov.

Aidingimonas (Ai.ding.i.mo’nas. N.L. n. Aiding a lake located in Xinjiang province of north-west China; L. fem. n. monas, monad a unit, a monad; N.L. fem. n. Aidingimonas a monad from Aiding Lake).

Cells are Gram-negative, facultatively anaerobic, non-endospore-forming, short rods. Non-motile without flagella. Moderately halophilic. Positive for catalase activity. Negative for oxidase activity and nitrate reduction. Ubiquinone 9 is present. Major fatty acids are C19:0 cyclo ω8c and C16:0. The DNA G+C content is about 57–58 mol% (HPLC). The polar lipid pattern consists of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol mannosides, two unknown phospholipids, two unknown phosphoglycolipids and one unknown glycolipid. The genus belongs to the family Halomonadaceae. The type species is Aidingimonas halophila.

Description of Aidingimonas halophila sp. nov.

Aidingimonas halophila (ha.lo’phi.la. Gr. n. hals, hales salt; Gr. adj. philos loving; N.L. fem. adj. halophila salt loving).

Exhibits the following properties in addition to those given for the genus. Colonies are colourless to yellow brown, flat and opaque with slightly irregular edges on modified ISP 2 medium. Cells are straight rods (0.1–0.3 μ 0.7–1.5 μm). Growth occurs at 10–45 °C, at pH 5.0–10.0 and in 1–25 % (w/v) NaCl, with optimal growth at 37 °C, pH 7.0–8.0 and 5–10 % NaCl. Non-endospore-forming. Does not contain poly-β-hydroxybutyrate granules or produce exopolysaccharide. Growth occurs under anoxic conditions in the presence of nitrate ion as electron acceptor. The Voges–Proskauer test is variable. Indole and H2S are not produced. Milk peptonization and coagulation and the methyl red test are negative. Gelatin, aesculin, casein, starch, and Tweens 40, 60 and 80 are not hydrolysed, but

Fig. 1. Phylogenetic position of YIM 90637T, BH 017 and representatives of some related taxa. The topology was inferred using the neighbour-joining method (Saitou & Nei, 1987) based on bootstrap analysis of 1000 trees; bootstrap values are shown at nodes. Asterisks indicate branches that were recovered with all three tree-making methods [maximum-likelihood (Felsenstein, 1981), maximum-parsimony (Fitch, 1971) and neighbour-joining]. The sequence of Oceanospirillum linum ATCC 11336T was chosen arbitrarily as an outgroup. Bar, 0.01 substitutions per site.
positive for hydrolysis of Tween 20 and urea. o-Nitrophenyl β-D-galactopyranosidase, phenylalanine deaminase and lysine and ornithine decarboxylase tests are negative, but positive for arginine dihydrolase. Citrate can be utilized. In the API ZYM system, positive for alkaline phosphatase, esterase (C4), esterase lipase (C8), acid phosphatase, naphthol-AS-BI-phosphohydrolase and z-glucosidase, but negative for lipase (C14), leucine arylamidase, valine arylamidase, cystine arylamidase, trypsin, z-chymotrypsin, z-galactosidase, β-glucosidase, β-galactosidase, β-glucuronidase, N-acetyl-β-glucosaminidase, z-mannosidase and z-fucosidase. Acid is produced from L-arabinose, D-ribose, D-xylene, D-galactose, D-glucose, cellobiose, maltose, lactose, melibiose, gentiobiose, D-fucose and potassium 5-ketogluconate (API 50CH0). The following substrates are utilized as sole carbon or nitrogen and energy sources in the Biolog GN2 system: z-cyclodextrin, dextrin, glycozen, T eens 40 and 80, N-acetyl-z-glucosamine, adonitol, L-arabinose, D-arabitol, cellobiose, erythritol, D-fructose, L-fucose, D-galactose, gentiobiose, z-D-glucose, myo-inositol, z-lactose, maltose, D-mannitol, D-mannose, melibiose, methyl β-D-glucoside, D-psicose, raffinose, L-rhamnose, D-sorbitol, sucrose, trehalose, turanose, xylitol, methyl pyruvate, monomethyl succinate, acetic acid, citis-acetic acid, citric acid, formic acid, D-galactonic acid lactone, D-galacturonic acid, D-glucoronic acid, D-glucosaminic acid, D-glucuronic acid, β-hydroxybutyric acid, z-ketoglutaric acid, DL-lactic acid, malonic acid, propionic acid, D-saccharic acid, succinic acid, bromosuccinic acid, succinamic acid, glucuronamide, L-alaninamide, D- and L-alanine, L-alanylglycine, L-asparagine, L-aspartic acid, L-glutamic acid, glycyl-L-aspartic acid, glycyl-L-glutamic acid, L-histidine, hydroxy-L-proline, L-ornithine, L-proline, D- and L-serine, L-threonine, γ-amino butyric acid, urocanic acid, uridine, putrescine, 2-aminoethanol, 2,3-butanediol, glycerol, glucose 1-phosphate and glucose 6-phosphate. The following substrates in the Biolog GN2 system are negative: N-acetyl- D-galactosamine, lactulose, z-hydroxybutyric acid, γ- hydroxybutyric acid, p-hydroxyphenylacetic acid, itaconic acid, z-ketobutyric acid, z-ketovaleric acid, quinic acid, sebacic acid, L-leucine, L-phenylalanine acid, L-pyrrolglutamic acid, DL-carnitine, inosine, thymidine, phenyl ethanolamine and DL-α-glycerol phosphate. Sensitive to the following antibiotics (per disc): amoxicillin (10 μg), chloramphenicoli (30 μg), ciprofloxacin (5 μg), erythromycin (15 μg), netilmicin (10 μg), norfloxacin (10 μg), penicillin (10 U), sulfamethoxazole/trimethoprim (23.75/1.25 μg), tetracycline (30 μg) and vancomycin (30 μg). Resistant to clindamycin (2 μg), gentamicin (10 μg), novobiocin (5 μg), streptomycin (15 μg) and tobramycin (10 μg). The fatty acids (>1% are) C19:0 cyclo o8c, C16:0, C18:1ω9c, C12:0 3-OH, C10:0, C17:0 cyclo and C12:0.

The type strain is YIM 90637T (=KCTC 12885T =CCTCC AB 207002T), isolated from a salt lake in Xinjiang province, north-west China. The DNA G+C content of the type strain is 57.5 mol%.

Acknowledgements

The authors are grateful to Dr Jean P. Euzéby for the Latin construction of the new taxon name. This research was supported by the National Basic Research Program of China (no. 2010CB383800), the National Natural Science Foundation of China (nos 30600001, 30860002, 30870005), the 973 Pre-research program of Chain (2008CB417214), the Ministry of Science of Technology, PR China (2006DAJ33550), Yunnan Provincial Natural Science Foundation (nos 2009AC017, 2009DA002), the Youth Technological Innovation Foundation of Xinjiang Academy of Agricultural Science (no. 2007Q07), the Open Project Program of the Extremophiles Lab of Xinjiang (no. XYS203-2005-01) and the 21C Frontier Program of Microbial Genomics and Applications from the MEST, Korea.

References

