Hymenobacter deserti sp. nov., isolated from the desert of Xinjiang, China

Lei Zhang, Jun Dai, Yali Tang, Xuesong Luo, Yang Wang, Hongli An, Chengxiang Fang and Chufu Zhang

Correspondence
Chengxiang Fang
cxfang@whu.edu.cn
Chufu Zhang
cfzhang@whu.edu.cn

College of Life Sciences, Wuhan University, Wuhan 430072, PR China

A Gram-negative, rod-shaped, non-motile and pink-pigmented bacterium, designated strain ZLB-3T, was isolated from a desert soil sample collected from Xinjiang Province, China, and characterized by using a polyphasic taxonomic approach. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the isolate belongs to the phylum *Bacteroidetes* and is related to the genus *Hymenobacter*. 16S rRNA gene sequence similarities between strain ZLB-3T and the type strains of *Hymenobacter* species with validly published names ranged from 90.0 to 94.6%. No other taxa in the phylum *Bacteroidetes* showed more than 90% sequence similarity to the isolate. The strain contained MK-7 as the predominant menaquinone. The major fatty acids were iso-C\textsubscript{15}:0 (27.8%), anteiso-C\textsubscript{17}:1 \textit{B}/iso-C\textsubscript{17}:0 \textit{I} (25.2%), iso-C\textsubscript{17}:0 3-OH (9.6%) and C\textsubscript{16}:1\textit{v7c}/iso-C\textsubscript{15}:0 2-OH (8.5%). Phosphatidylethanolamine, two unknown aminophospholipids, an unknown aminolipid, an unknown glycolipid and six unknown polar lipids were detected in the polar lipid profile. The DNA G+C content was 58.6 mol%. These chemotaxonomic data supported the affiliation of strain ZLB-3T to the genus *Hymenobacter*.

However, the results of physiological and biochemical tests allowed phenotypic differentiation of the isolate from recognized *Hymenobacter* species. On the basis of the evidence presented, it is proposed that strain ZLB-3T represents a novel species, *Hymenobacter deserti* sp. nov. The type strain is ZLB-3T (=CCTCC AB 207171T =NRRL B-51267T).

The genus *Hymenobacter* was first described by Hirsch *et al.* (1998) and its description was subsequently emended by Buczolits *et al.* (2006). At the time of writing, it comprises 11 recognized species, including the recently described species *Hymenobacter soli* (Kim *et al.*, 2008) and *Hymenobacter psychrotolerans* (Zhang *et al.*, 2008). In this study, we report a pink-pigmented bacterial strain, ZLB-3T, isolated from a desert area in Xinjiang Province, PR China, in the course of environmental investigation. On the basis of phenotypic characteristics, chemotaxonomic data and phylogenetic analysis of the 16S rRNA gene sequence, the isolate represents a novel species of *Hymenobacter*.

Strain ZLB-3T was isolated from a desert soil sample. The soil sample was thoroughly suspended in sterilized water and the suspension was spread on tenfold-diluted tryptic soy broth (0.1 x TSB) agar plates [3.0 g TSB (Difco) l-1 solidified with 15.0 g agar l-1, pH 7.0] after serial dilution with sterilized water. Isolation was achieved after incubation at 28 °C for 1 week. Isolate ZLB-3T was routinely cultivated on the same medium at 30 °C and stored as a glycerol suspension (20%, v/v) at −80 °C.

Chromosomal DNA was isolated and purified by using a Bacteria Genomic DNA isolation kit (ChaoShi-Bio). Primers 27f (5′-GAGTTTGATCCTGGCTCAG-3′) and 1527r (5′-AGAAAGGAGGTGATCCAGCC-3′) were used for amplification of the 16S rRNA gene (Lane, 1991). PCR and 16S rRNA gene sequencing were carried out as described by Lin *et al.* (2004). An almost-complete 16S rRNA gene sequence was obtained (1427 bp) and compared with sequences deposited in the GenBank database. The sequences were aligned using CLUSTAL_X software (Thompson *et al.*, 1997) and distances were calculated according to Kimura’s two-parameter method (Kimura, 1980). Phylogenetic trees were inferred using the neighbour-joining method (Saitou & Nei, 1987) and bootstrap analysis was performed, based on 1000 resamplings (Felsenstein, 1985). The MEGA package version 3.1 (Kumar *et al.*, 2004) was used for all analyses.

Comparative 16S rRNA gene sequence analysis showed that strain ZLB-3T was most closely related to members of the
genus *Hymenobacter*. In a phylogenetic tree based on the neighbour-joining algorithm, strain ZLB-3^T joined the clade comprising *Hymenobacter* species at a bootstrap confidence value of 100 % (Fig. 1). Strain ZLB-3^T showed the highest 16S rRNA gene sequence similarity to *Hymenobacter ocellatus* Myx 2105^T (94.6 %); this value is well below the threshold for demarcating bacterial species (Stackebrandt & Goebel, 1994). 16S rRNA gene sequence similarities between strain ZLB-3^T and the type strains of other *Hymenobacter* species ranged from 90.0 to 92.3 %. No other recognized bacterial species showed more than 90 % 16S rRNA gene sequence similarity to the new isolate. These results suggest that strain ZLB-3^T represents a novel species within the genus *Hymenobacter*.

Cell morphology was examined using phase-contrast microscopy (BX51 microscope; Olympus). The Gram reaction was carried out according to the classical Gram procedure described by Doetsch (1981). Gliding motility was examined as described by Bowman (2000). Growth was assessed at 4, 10, 25, 30, 37, 40 and 42 °C, at pH 4–11 (increments of 1 pH unit) and at 0, 1, 2, 3, 5 and 10 % NaCl. Oxidase activity was tested using a 1 % solution of tetramethyl-p-phenylenediamine (Kovács, 1956). Catalase activity was detected by assessing the production of bubbles after the addition of a drop of 3 % H₂O₂. Hydrolysis of starch and casein was tested as described by Smibert & Yokota (2003). For fatty acid methyl ester analysis, strain ZLB-3^T formed visible colonies on 0.1 mM PYES agar, but did not grow on TSA or marine agar 2216 (Difco). Colonies were pink, convex and circular. Cells were Gram-negative, strictly aerobic, non-motile, 1.1–2.5 μm long and 0.6–0.8 μm wide. The physiological and biochemical characteristics of strain ZLB-3^T are summarized in the species description and a comparison of selective characteristics with related type strains is given in Table 1.

The DNA G+C content of strain ZLB-3^T was determined by HPLC (UltiMate 3000; Dionex) according to the method of Mesbah et al. (1989). Respiratory quinones were extracted and identified by HPLC as described by Xie & Yokota (2003). For fatty acid methyl ester analysis, strain ZLB-3^T and the five reference strains were grown on R2A agar at 30 °C for 48 h and the results were read with a MicroPlate reader, using MicroLog 3 computer software to perform automated reading and identification.

The DNA G+C content of strain ZLB-3^T was determined by HPLC (UltiMate 3000; Dionex) according to the method of Mesbah et al. (1989). Respiratory quinones were extracted and identified by HPLC as described by Xie & Yokota (2003). For fatty acid methyl ester analysis, strain ZLB-3^T and the five reference strains were grown on R2A agar at 30 °C for 48 h. Fatty acids were extracted, methylated and analysed according to the standard

Fig. 1. Neighbour-joining phylogenetic tree, based on 16S RNA gene sequences, showing the relationships of strain ZLB-3^T and related taxa. Bootstrap values (1000 replications) are shown as percentages at each node only if they are 50 % or greater. The sequence of *Flavobacterium aquatile* ATCC 11947^T was used as an outgroup. Bar, 0.02 substitutions per nucleotide position.
Table 1. Phenotypic characteristics that differentiate strain ZLB-3^T from related members of the genus Hymenobacter

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Growth at/in:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 °C</td>
<td>(+)</td>
<td>-</td>
<td>(-)</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>37 °C</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>(+)</td>
<td>+</td>
</tr>
<tr>
<td>1 % NaCl</td>
<td>(+)</td>
<td>+</td>
<td>-</td>
<td>(-)</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>3 % NaCl</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>(-)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Carbon-source utilization on Biolog GN2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-Acetyl-D-glucosamine</td>
<td>(+)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>(+)</td>
<td>-</td>
</tr>
<tr>
<td>Cellobiose</td>
<td>(+)</td>
<td>-</td>
<td>(-)</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>i-Erythritol</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Gentriobiose</td>
<td>-</td>
<td>(+)</td>
<td>-</td>
<td>(+)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lactulose</td>
<td>(+)</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>D-Mannose</td>
<td>+</td>
<td>(+)</td>
<td>+</td>
<td>-</td>
<td>(+)</td>
<td>-</td>
</tr>
<tr>
<td>Aceitic acid</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Formic acid</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>D-Gluosaminic acid</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>(+)</td>
<td>+</td>
<td>(+)</td>
</tr>
<tr>
<td>2-Aketobutyric acid</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>I-Serine</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Glucose 6-phosphate</td>
<td>(+)</td>
<td>-</td>
<td>-</td>
<td>(-)</td>
<td>-</td>
<td>(-)</td>
</tr>
<tr>
<td>Enzyme activity (API ZYM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Esterase (C4)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>(+)</td>
<td>(+)</td>
<td>+</td>
</tr>
<tr>
<td>Valine arylamidase</td>
<td>+</td>
<td>-</td>
<td>(+)</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Cystine arylamidase</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>(+)</td>
<td>+</td>
</tr>
<tr>
<td>Acid phosphatase</td>
<td>+</td>
<td>-</td>
<td>(+)</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>2-Aketoglutaric acid</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N-Acetyl-2-glucosaminidase</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>2-Aketomannosidase</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>DNA G+C content (mol%)</td>
<td>58.6</td>
<td>65</td>
<td>NR</td>
<td>61</td>
<td>54</td>
<td>65</td>
</tr>
</tbody>
</table>

protocol of the Sherlock Microbial Identification System (MIDI). Polar lipids were extracted and analysed as described by Tindall (1990) and Ventosa et al. (1993).

The DNA G+C content of strain ZLB-3^T was 58.6 mol%, which is consistent with the range reported for the genus Hymenobacter (55–65 mol%; Buczolits et al., 2006). The predominant isoprenoid quinone was MK-7. The major fatty acids were iso-C_{15:0} (27.8%), summed feature 4 (anteiso-C_{17:1} <i>B</i>/iso-C_{17:1} <i>I</i>) (25.2%), iso-C_{17:0} 3-OH (9.6%) and summed feature 3 (C_{16:1}ω7c/iso-C_{15:0} 2-OH) (8.5%). The fatty acid profile of the new isolate was similar to those of Hymenobacter species. However, some obvious quantitative differences were observed. The novel strain differed from the other Hymenobacter species especially in the relative amounts of iso-C_{17:0} 3-OH, C_{16:1}ω5^c and anteiso-C_{15:0} and summed feature 3. Detailed fatty acid profiles are shown in Table 2. The polar lipid profile (Fig. 2) consisted mainly of phosphatidylethanolamine, two unknown aminophospholipids (APL1, APL2) and an unknown polar lipid (L3). An unknown aminolipid (AL1), an unknown glycolipid (GL1) and three unknown polar lipids (L2, 5, 6) occurred at moderate levels. Trace amounts of two further unknown polar lipids (L1, 4) were also detected. The polar lipid profile may be useful for confirming strain ZLB-3^T as a representative of a novel species within the genus Hymenobacter.

In summary, the characteristics of strain ZLB-3^T are consistent with the description of the genus Hymenobacter with regard to morphological, biochemical and chemotaxonomic properties. However, on the basis of phylogenetic distance from known Hymenobacter species indicated by 16S rRNA gene sequence similarities and the combination of unique phenotypic characteristics (Table 1), strain ZLB-3^T should be placed in the genus Hymenobacter as a representative of a novel species, for which the name Hymenobacter desertii sp. nov. is proposed.

Description of Hymenobacter desertii sp. nov.

Hymenobacter desertii (de.ser’ti. L. gen. n. deserti of a desert).

Cells are Gram-negative, rod-shaped, non-spor-forming, 1.1–2.5 μm long and 0.6–0.8 μm wide. Motility is not
Table 2. Cellular fatty acid compositions of the type strains of *Hymenobacter* species

<table>
<thead>
<tr>
<th>Fatty acid</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>C14:0</td>
<td>ND</td>
<td>ND</td>
<td>1.2</td>
<td>ND</td>
<td>1.6</td>
<td>1.1</td>
<td>ND</td>
<td>0.8</td>
<td>ND</td>
<td>0.8</td>
<td>1.0</td>
<td>0.9</td>
</tr>
<tr>
<td>iso-C14:0</td>
<td>0.1</td>
<td>0.5</td>
<td>ND</td>
<td>ND</td>
<td>0.3</td>
<td>0.4</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>0.7</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>iso-C15:1 G</td>
<td>0.3</td>
<td>0.7</td>
<td>ND</td>
<td>ND</td>
<td>0.9</td>
<td>0.7</td>
<td>ND</td>
<td>ND</td>
<td>1.8</td>
<td>0.8</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>anteiso-C15:1 A</td>
<td>0.1</td>
<td>0.5</td>
<td>ND</td>
<td>ND</td>
<td>0.4</td>
<td>0.3</td>
<td>ND</td>
<td>ND</td>
<td>0.6</td>
<td>1.1</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>iso-C15:0</td>
<td>27.8</td>
<td>27.5</td>
<td>51.8</td>
<td>8.3</td>
<td>18.9</td>
<td>22.3</td>
<td>22.3</td>
<td>10.8</td>
<td>24.5</td>
<td>17.3</td>
<td>22.5</td>
<td>25.1</td>
</tr>
<tr>
<td>anteiso-C15:0</td>
<td>1.6</td>
<td>6.8</td>
<td>6.2</td>
<td>ND</td>
<td>6.8</td>
<td>6.4</td>
<td>25.8</td>
<td>22.3</td>
<td>8.4</td>
<td>23.1</td>
<td>4.6</td>
<td>5.2</td>
</tr>
<tr>
<td>iso-C16:1 H</td>
<td>1.1</td>
<td>0.8</td>
<td>1.0</td>
<td>2.7</td>
<td>1.6</td>
<td>2.3</td>
<td>1.5</td>
<td>1.5</td>
<td>1.2</td>
<td>3.7</td>
<td>2.4</td>
<td>1.7</td>
</tr>
<tr>
<td>iso-C16:0</td>
<td>0.8</td>
<td>0.9</td>
<td>ND</td>
<td>2.1</td>
<td>0.8</td>
<td>1.5</td>
<td>ND</td>
<td>0.8</td>
<td>2.1</td>
<td>2.7</td>
<td>1.8</td>
<td>0.7</td>
</tr>
<tr>
<td>C16:1ω5c</td>
<td>4.9</td>
<td>7.5</td>
<td>11.0</td>
<td>23.3</td>
<td>12.5</td>
<td>15.2</td>
<td>3.7</td>
<td>7.9</td>
<td>12.7</td>
<td>11.3</td>
<td>20.5</td>
<td>14.2</td>
</tr>
<tr>
<td>C16:0</td>
<td>2.0</td>
<td>0.6</td>
<td>4.2</td>
<td>1.1</td>
<td>2.6</td>
<td>2.6</td>
<td>ND</td>
<td>1.7</td>
<td>2.3</td>
<td>ND</td>
<td>1.3</td>
<td>2.1</td>
</tr>
<tr>
<td>iso-C15:0 3-OH</td>
<td>5.1</td>
<td>3.5</td>
<td>2.1</td>
<td>2.7</td>
<td>3.1</td>
<td>2.9</td>
<td>1.6</td>
<td>1.6</td>
<td>2.7</td>
<td>2.3</td>
<td>3.2</td>
<td>4.1</td>
</tr>
<tr>
<td>iso-C17:0ω9c</td>
<td>0.7</td>
<td>1.1</td>
<td>ND</td>
<td>0.2</td>
<td>0.7</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>0.2</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>iso-C17:0</td>
<td>2.1</td>
<td>3.1</td>
<td>1.1</td>
<td>1.7</td>
<td>2.3</td>
<td>1.8</td>
<td>1.8</td>
<td>4.5</td>
<td>0.4</td>
<td>1.7</td>
<td>1.3</td>
<td>1.9</td>
</tr>
<tr>
<td>anteiso-C17:0</td>
<td>0.4</td>
<td>0.9</td>
<td>ND</td>
<td>0.5</td>
<td>0.4</td>
<td>0.7</td>
<td>2.3</td>
<td>ND</td>
<td>2.0</td>
<td>ND</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>C17:1ω6c</td>
<td>0.8</td>
<td>1.2</td>
<td>ND</td>
<td>1.1</td>
<td>0.6</td>
<td>0.8</td>
<td>ND</td>
<td>0.7</td>
<td>ND</td>
<td>0.6</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>iso-C16:0 3-OH</td>
<td>0.6</td>
<td>0.3</td>
<td>ND</td>
<td>1.0</td>
<td>0.3</td>
<td>0.3</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>0.4</td>
<td>0.2</td>
</tr>
<tr>
<td>C16:1 3-OH</td>
<td>0.6</td>
<td>0.4</td>
<td>1.0</td>
<td>1.2</td>
<td>0.8</td>
<td>0.9</td>
<td>ND</td>
<td>ND</td>
<td>1.4</td>
<td>ND</td>
<td>1.3</td>
<td>1.0</td>
</tr>
<tr>
<td>iso-C17:0 3-OH</td>
<td>9.6</td>
<td>7.0</td>
<td>1.2</td>
<td>5.8</td>
<td>4.3</td>
<td>4.1</td>
<td>3.1</td>
<td>3.5</td>
<td>3.5</td>
<td>3.7</td>
<td>4.5</td>
<td>4.5</td>
</tr>
<tr>
<td>C17:2 2-OH</td>
<td>0.3</td>
<td>0.2</td>
<td>ND</td>
<td>ND</td>
<td>0.4</td>
<td>0.3</td>
<td>2.0</td>
<td>1.3</td>
<td>ND</td>
<td>1.7</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>Summed feature 2*</td>
<td>1.8</td>
<td>2.6</td>
<td>0.9</td>
<td>ND</td>
<td>1.4</td>
<td>1.5</td>
<td>2.3</td>
<td>0.8</td>
<td>1.5</td>
<td>ND</td>
<td>1.0</td>
<td>2.5</td>
</tr>
<tr>
<td>Summed feature 3*</td>
<td>8.5</td>
<td>9.6</td>
<td>14.4</td>
<td>29.8</td>
<td>24.1</td>
<td>15.0</td>
<td>13.1</td>
<td>21.4</td>
<td>20.0</td>
<td>17.6</td>
<td>19.9</td>
<td>15.8</td>
</tr>
<tr>
<td>Summed feature 4*</td>
<td>25.2</td>
<td>14.1</td>
<td>3.5</td>
<td>18.5</td>
<td>7.3</td>
<td>13.5</td>
<td>19.9</td>
<td>17.7</td>
<td>14.0</td>
<td>9.4</td>
<td>5.7</td>
<td>9.7</td>
</tr>
</tbody>
</table>

*Summed features represent groups of two or three fatty acids that could not be separated by GLC with the MIDI system. Summed feature 2 contains C13:0 3-OH and/or iso-C15:1 I; summed feature 3 contains C16:1ω7c and/or iso-C15:0 2-OH; summed feature 4 contains anteiso-C17:1 B and/or iso-C17:1 I.

observed. Colonies grown on 0.1 × TSB agar for 5 days are circular, 1–2 mm in diameter, convex, pink and smooth. Growth occurs at 4–40 °C (optimum 30 °C), 0–2% (w/v) NaCl (optimum 0%) and pH 5–11 (optimum pH 7). Oxidase- and catalase-positive. Gelatin, starch and casein are hydrolysed, but ascinulin is not. Nitrate reduction is weakly positive without production of N2. H2S, indole and acetoin (Voges–Proskauer reaction) are not produced. Activities of arginine dihydrolase, lysine decarboxylase, ornithine decarboxylase, tryptophan deaminase and urease are not detected. Biolog GN2 tests show that the type strain oxidizes α-cyclodextrin, dextrin, glycogen, N-acetyl-D-glucosamine, l-arabinose, cellobiose, l-erythritol, D-fructose, D-galactose, D-g-lactose, lactulose, maltose, D-mannose, D-sorbitol, trehalose, turanose, monomethyl succinate, acetic acid, citric acid, D-galacturonic acid, α-ketobutyric acid, L-alanine, L-asparagine, L-aspartic acid, L-glutamic acid, glyc L-glutamic acid, L-serine, L-threonine, uridine and glucose 6-phosphate. Does not oxidize TWEENs 40 or 80, N-acetyl-D-galactosamine, adonitol, D-arabitol, L-fucose, gentio-
Susceptible to chloramphenicol, erythromycin, gentamycin, penicillin G, polymyxin B sulfate, tetracycline, kanamycin and vancomycin. The predominant menaquinone is MK-7. The major fatty acids are iso-C_{15:0}, summed feature 4 (anteiso-C_{17:1} B/iso-C_{17:1} I), iso-C_{17:0} 3-OH and summed feature 3 (C_{16:0} 7t/iso-C_{15:0} 2-OH). The polar lipid profile is composed of the major compound phosphatidylethanolamine and two unknown aminophospholipids, an aminolipid, a glycolipid and six polar lipids. The DNA G+C content of the type strain is 58.6 mol%.

The type strain, ZLB-3^T (=CCTCC AB 207171^T =NRRL B-51267^T), was isolated from the surface layer of a desert soil from Xinjiang Province, China.

Acknowledgements

We are grateful to Dr Hans-Jürgen Busse for kindly providing the type strain of *H. norwichensis*. This work was supported by the R & D Infrastructure and Facility Development Program from the Ministry of Science and Technology of the People’s Republic of China (grant no. 2005DKA21208).

References

