Tranquillimonas alkanivorans gen. nov., sp. nov., an alkane-degrading bacterium isolated from Semarang Port in Indonesia

Thersea UmI Harwati,1,2 Yuki Kasai,1 Yumiko Kodama,1
Dwi Susilaningsih2 and Kazuya Watanabe1

1Marine Biotechnology Institute, 3-75-1 Heita, Kamaishi, Iwate 026-0001, Japan
2Research Centre for Biotechnology, Indonesia Institute of Sciences (LIPI), Cibinong 11691, Indonesia

Strain A34T, an obligately halophilic, Gram-negative, non-motile, rod-shaped bacterium, was isolated from seawater obtained from Semarang Port in Indonesia. It possesses a pink pigment and degrades short-chain alkanes. It is positive for catalase and oxidase and reduces nitrate to nitrite. Analyses of 16S rRNA gene sequences revealed a clear affiliation of this strain with the family ‘Rhodobacteraceae’ in the class Alphaproteobacteria, with its closest relatives being Salipiger mucosus A3T (94.9 % sequence similarity) and Palleronia marisminoris B33T (93.4 %). The DNA G+C content was 69.1 mol%. The major cellular fatty acids of strain A34T were C18 : 1ω7c (56.2 %), C19 : 0 cyclo ω8c (26.0 %) and C16 : 0 (9.1 %), while the predominant respiratory lipoquinone was ubiquinone-10. Based on the physiological and phylogenetic data, it is proposed that strain A34T should be classified in a new genus and species, for which the name *Tranquillimonas alkanivorans* gen. nov., sp. nov. is proposed. The type strain of *Tranquillimonas alkanivorans* is strain A34T (=JCM 14836T =DSM 19547T).

Contamination of the marine environment with petroleum hydrocarbons is of great public concern because of their toxicity to humans and marine organisms (Malins et al., 1985; Meador et al., 1995). Many studies have therefore been aimed at the isolation of marine hydrocarbon-degrading bacteria (Kasai et al., 2002a, b; Ozaki et al., 2006); however, information regarding tropical hydrocarbon-degrading bacteria is relatively scarce (Chaillan et al., 2004; Zhuang et al., 2003, Zinjarde & Pant, 2002). We have recently isolated 153 marine bacteria from seawater obtained from the Semarang Port in Indonesia and analysed their hydrocarbon-degrading abilities (Harwati et al., 2004). Among them, based on 16S rRNA gene analyses, an alkane-degrading bacterium, strain A34T, was considered to represent a novel taxon (Harwati et al., 2007). Here, we investigate the taxonomic characteristics of strain A34T.

Cell morphology was examined by transmission electron microscopy (Beveridge et al., 1994), while motility was checked under a phase-contrast microscope. Gram staining and oxidase and catalase tests were performed using the procedures of Smibert & Krieg (1994). Growth was tested at 30 °C in marine broth 2216 (MB) (Difco) unless otherwise stated. Salinity requirements were tested at 30 °C using modified MB (Sohn et al., 2004) supplemented with 0–20 % (w/v) NaCl. The pH range and optimum were determined at 30 °C using marine 2216 agar (MA), the pH of which had been adjusted to pH 5.5–11 using HCl and KOH. Detection of poly-β-hydroxyalkanoate (PHA) was done using Sudan black (de Lima et al., 1999). Susceptibility to antibiotics was determined on MA plates in the presence of the following antibiotics at the concentrations given (µg ml−1): ampicillin (50, 100, 150 and 200), chloramphenicol (20), gentamicin (50), kanamycin sulfate (20), nalidixic acid (20, 50, 100 and 200), neomycin (50), streptomycin (20), tetracycline (10) and spectinomycin (7.5, 15 and 20). API ZYM, API 20NE (both from bioMérieux) and Microlog GN2 plates (Biolog) were used for physiological and biochemical characterization according to the manufacturers’ instructions.

Cells of strain A34T were Gram-negative, non-motile, straight rods (1.7–2.8 µm long and 0.2–0.5 µm wide) that lacked flagella. The strain formed pink colonies on MA plates and was capable of growth on decane as a sole source of carbon and energy. It was positive in oxidase, catalase and nitrate reduction (nitrite was the final product) tests. Cells contained PHA. Growth of strain A34T was observed between 10 and 50 °C, with optimum growth at 43 °C. Strain A34T grew at pH 6.5–9.5, with optimum growth at 30 °C in marine broth 2216 (MB) (Difco) unless otherwise stated. Salinity requirements were tested at 30 °C using modified MB (Sohn et al., 2004) supplemented with 0–20 % (w/v) NaCl. The pH range and optimum were determined at 30 °C using marine 2216 agar (MA), the pH of which had been adjusted to pH 5.5–11 using HCl and KOH. Detection of poly-β-hydroxyalkanoate (PHA) was done using Sudan black (de Lima et al., 1999). Susceptibility to antibiotics was determined on MA plates in the presence of the following antibiotics at the concentrations given (µg ml−1): ampicillin (50, 100, 150 and 200), chloramphenicol (20), gentamicin (50), kanamycin sulfate (20), nalidixic acid (20, 50, 100 and 200), neomycin (50), streptomycin (20), tetracycline (10) and spectinomycin (7.5, 15 and 20). API ZYM, API 20NE (both from bioMérieux) and Microlog GN2 plates (Biolog) were used for physiological and biochemical characterization according to the manufacturers’ instructions.

Cells of strain A34T were Gram-negative, non-motile, straight rods (1.7–2.8 µm long and 0.2–0.5 µm wide) that lacked flagella. The strain formed pink colonies on MA plates and was capable of growth on decane as a sole source of carbon and energy. It was positive in oxidase, catalase and nitrate reduction (nitrite was the final product) tests. Cells contained PHA. Growth of strain A34T was observed between 10 and 50 °C, with optimum growth at 43 °C. Strain A34T grew at pH 6.5–9.5, with optimum growth at

Abbreviation: PHA, poly-β-hydroxyalkanoate.

The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain A34T is AB302386.
pH 8.5. It showed an absolute requirement for NaCl, as no growth was observed in medium without NaCl. Strain A34T grew at 1–13 % NaCl, with optimum growth at 2 %. The physiological and biochemical characteristics of strain A34T are given in the species description. Strain A34T was susceptible to ampicillin, chloramphenicol, gentamicin, kanamycin, neomycin, spectinomycin, streptomycin and tetracycline, but resistant to nalidixic acid.

Cellular fatty acids and quinones were analysed by TechnoSuruga Laboratory Co., Ltd, using cells grown in MB for 24 h. The fatty acids (≥0.1 %) of strain A34T were C\textsubscript{18:1}\texttrademark{ω}7c (56.23 %), C\textsubscript{19:0} cyclo ω8c (25.95 %), C\textsubscript{16:0} (9.05 %), C\textsubscript{13:0} 3-OH (2.33 %), C\textsubscript{18:0} (1.58 %), 11-methyl C\textsubscript{18:1}\texttrademark{ω}7c (0.80 %), C\textsubscript{16:1}\texttrademark{ω}7c and/or C\textsubscript{15:0} iso 2-OH (0.71 %), C\textsubscript{20:0} cyclo ω9c (0.70 %), C\textsubscript{17:0} (0.54 %), C\textsubscript{10:0} (0.51 %), C\textsubscript{20:1}\texttrademark{ω}7c (0.50 %) and C\textsubscript{17:0} cyclo (0.40 %) (Table 1). The fatty acid profile did not match any species profile available in the Sherlock Microbial Identification System database (MIDI, Inc.). The presence of C\textsubscript{18:1}\texttrademark{ω}7c as the predominant fatty acid is a feature characteristic of taxa within the class Alphaproteobacteria. Nevertheless, the cyclo-substituted fatty acid C\textsubscript{19:0} cyclo ω8c is not widely present in the family ‘Rhodobacteraceae’. The only respiratory lipoquinone found in strain A34T was ubiquinone-10. The presence of ubiquinone-10 as the dominant respiratory lipoquinone is characteristic of members of the class Alphaproteobacteria.

The 16S rRNA gene sequence of strain A34T (1364 bp) was determined previously (Harwati et al., 2007). A sequence similarity search was conducted using the GenBank and RDP (Maidak et al., 1999) databases. Phylogenetic analysis was performed using CLUSTAL_X (version 1.83) (Thompson et al., 1997), and a phylogenetic tree was constructed using the neighbour-joining plot program in MEGA version 3.0 (Kumar et al., 2004). Phylogenetic analysis of the 16S rRNA gene sequence showed that strain A34T was affiliated with the ‘Rhodobacteraceae’ (Fig. 1). The closest relative of strain A34T was Salipiger mucosus A3T (94.9 % 16S rRNA gene sequence identity), while Palleronia marismorinis B33T (93.4 %) was the second closest relative. The G+C content of strain A34T as determined by the method of Katayama-Fujimura et al. (1984) was 69.1 mol%.

Table 2 shows several phenotypic traits of strain A34T that can differentiate it from phylogenetically related bacteria in the ‘Rhodobacteraceae’. Based on phylogeny, fatty acid profile, G+C content and phenotypic characteristics (e.g. nitrate reduction), we conclude that strain A34T should be recognized as a representative of a novel genus and species, for which the name Tranquillimonas alkanivorans gen. nov., sp. nov. is proposed.

Description of Tranquillimonas alkanivorans gen. nov. sp. nov.

Tranquillimonas (Tran.quill’i.mo’nas. L. adj. tranquillus quiet, calm, still; L. fem. n. monas a unit, monad; N.L. fem. n. Tranquillimonas a still monad).

Cells are Gram-negative, non-motile rods (1.7–2.8 µm long and 0.2–0.5 µm wide). Obligately halophilic: Na+ ions are required for growth. Form pink colonies when grown on MA plates. Tests for oxidase and catalase are positive. Contain PHA. The major ubiquinone is Q-10. Dominant fatty acids are C\textsubscript{18:1}\texttrademark{ω}7c, C\textsubscript{19:0} cyclo ω8c and C\textsubscript{16:0}. The type species is Tranquillimonas alkanivorans.

Description of Tranquillimonas alkanivorans sp. nov.

Tranquillimonas alkanivorans (al’ka’ni.vo’rans. N.L. neut. n. alkanum alkane; L. part. adj. vorans devouring; N.L. part. adj. alkanivorans alkane-degrading).

The description is identical to that of the genus, with the following additions. Growth occurs at 10–50 °C (optimal 43 °C), pH 6.5–9.5 (optimum pH 8.5) and 1–13 % (w/v) NaCl (optimum 2 %). Susceptible to (μg per disc) ampicillin (50), chloramphenicol (20), gentamicin (50), kanamycin (20), neomycin (50), spectinomycin (7.5), streptomycin (20) and tetracycline (10), but resistant to nalidixic acid (200). Tests for nitrate reduction, β-glucosidase, protease, alkaline phosphatase, esterase (C4), esterase lipase (C8), leucine arylamidase, acid phosphatase, naphthol-AS-BI-phosphohydrolase, α-glucosidase, β-glucosidase and ONPG are positive. Tests for indole production, glucose fermentation, urease, arginine, lipase (C14), valine arylamidase, cystine arylamidase, trypsin, x-chymotrypsin, α-galactosidase, β-galactosidase, N-acetyl-β-glucosaminidase, α-mannosidase and α-fucosidase are negative. The following compounds are utilized as carbon sources in the Biolog GN2 plate: Tweens 40 and 80, L-arabinose, D-fructose, L-fructose, D-galactose, gentiobiose, α-D-glucose, myo-inositol, α-D-lactose, lactulose, maltose, D-mannitol, methyl β-D-glucose, D-psicose, raffinose, L-rhamnose, D-sorbitol, sucrose, trehalose.
turanose, xylitol, pyruvic acid, citric acid, formic acid, D-galactonic acid lactone, D-galacturonic acid, D-glucosaminic acid, D-glucuronic acid, \(\alpha \)-hydroxybutyric acid, \(\beta \)-hydroxybutyric acid, \(\alpha \)-ketoglutaric acid, D- and L-lactic acid, succinic acid, glutaronamide, aspartic acid, D- and L-alanine, L-alanyl glycine, L-asparagine, L-aspartic acid, L-glutamic acid, hydroxy-L-proline, L-leucine, L-ornithine, L-phenylalanine, L-proline, L-pyroglutamic acid, D- and L-serine and L-threonine. Degrades alkanes (C \(_{10-13}\)). Dominant fatty acids (\%) are C\(_{18:1}\) \(\omega _7 \) \(c \) (56.2), C\(_{19:0}\) cyclo \(\omega _8 \) \(c \) (26.0), C\(_{16:0}\) (9.1) and C\(_{13:0}\) 3-OH (2.3). The DNA G + C content of the type strain is 69.1 mol%.

The type strain, A\(_{34}^T\) (=JCM 14836\(^T\) =DSM 19547\(^T\)), was isolated from seawater in Semarang Port, Indonesia.

Table 2. Characteristics that distinguish strain A\(_{34}^T\) from related members of the family ‘Rhodobacteraceae’

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
<td>Seawater</td>
<td>Hypersaline soil</td>
<td>Hypersaline soil</td>
<td>Cyanobacterial mat in a saline lake</td>
</tr>
<tr>
<td>Pigmentation</td>
<td>Pink</td>
<td>–</td>
<td>Pink</td>
<td>Pink</td>
</tr>
<tr>
<td>Flagella</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Single, subpolar</td>
</tr>
<tr>
<td>PHA</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>ND</td>
</tr>
<tr>
<td>Oxidase</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>Temperature range (°C)</td>
<td>10–50</td>
<td>20–40</td>
<td>20–37</td>
<td>27–30*</td>
</tr>
<tr>
<td>NaCl concentration for growth (% w/v)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>1–13</td>
<td>0.5–20</td>
<td>0.5–15</td>
<td>0.5–20</td>
</tr>
<tr>
<td>Optimum</td>
<td>2</td>
<td>9–10</td>
<td>5</td>
<td>ND</td>
</tr>
<tr>
<td>Nitrate to nitrite</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Acid from glucose</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>Indole</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>ONPG</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>Urease</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>Phosphatase</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>ND</td>
</tr>
<tr>
<td>DNA G + C content (mol%)</td>
<td>69.1</td>
<td>64.5</td>
<td>64.2</td>
<td>59.7</td>
</tr>
</tbody>
</table>

*Only the optimum temperature has been published.
Acknowledgements

We are grateful to Professor Dr H. G. Truper for his help with the genus and species names. We thank Hiromi Awabuchi and Midori Satoh for their technical assistance. This work was supported by the Japan International Cooperation Agency (JICA) and the Indonesian Institute of Sciences (LIPI).

References

