Paenibacillus tarimensis sp. nov., isolated from sand in Xinjiang, China

Mengxi Wang,† Ming Yang,† Guoling Zhou, Xuesong Luo, Lei Zhang, Yali Tang and Chengxiang Fang

Correspondence
Chengxiang Fang
cxfang@whu.edu.cn

A Gram-positive, rod-shaped, motile, spore-forming bacterium, strain SA-7-6T, was isolated from desert soil in China and was subjected to a polyphasic taxonomic study. The strain grew optimally at pH 7.5 and 37 °C. The G+C content of the genomic DNA of strain SA-7-6T was 53.7 mol%. The predominant menaquinone was MK-7. The major cellular fatty acid was anteiso-C15:0. Strain SA-7-6T contained meso-diaminopimelic acid in the cell-wall peptidoglycan. 16S rRNA gene sequence analysis showed that the new isolate shared highest similarity with Paenibacillus glycanilyticus JCM 11221T (96.6 %) and Paenibacillus daejeonensis KCTC 3745T (96.6 %). Based on morphological, physiological, chemotaxonomic and phylogenetic characteristics, strain SA-7-6T is considered to represent a novel species of the genus Paenibaillus, for which the name Paenibacillus tarimensis sp. nov. is proposed. The type strain is SA-7-6T (=CCTCC AB 206108T =DSM 19409T).

The genus Bacillus was first described by Cohn in 1872, and many of its members have been reclassified in recent years on the basis of 16S rRNA gene-based molecular analysis. Ash et al. (1993) transferred members of Bacillus group 3 to the genus Paenibacillus, which, at the time of writing, comprises 82 recognized species (http://www.bacterio.cict.fr/p/paenibacillus.html). Species belonging to the genus Paenibacillus have been isolated from different ecological habitats such as desert soil (Lim et al., 2006a, b), honeybee larvae (Genersch et al., 2006), warm springs (Saha et al., 2005) and alkaline soil (Yoon et al., 2005). Members produce ellipsoidal spores in swollen sporangia, are aerobic or facultatively anaerobic, and possess anteiso-C15:0 as the major cellular fatty acid and MK-7 as the predominant menaquinone (Shida et al., 1997).

A novel bacterium, designated strain SA-7-6T, was isolated from desert sand of the Tarim Basin, Xinjiang, China. The sand sample was suspended in sterile distilled water and inoculated on TGY (per litre distilled water: 5 g tryptone, 3 g yeast extract, 1 g glucose) agar plates for 48 h at 37 °C. For subsequent study, the isolate was cultured on trypticase soy agar (TSA) [per litre distilled water: 30.0 g trypticase soy broth (TSB; Difco), 16.0 g agar, adjusted to pH 7.5] at 37 °C for 16 h, which were the optimum conditions to gain cells in the exponential phase of growth.

Isolation of the genomic DNA of strain SA-7-6T was carried out according to the methods described by Yoon et al. (1996). Fragments comprising the nearly full-length 16S rRNA gene were amplified by PCR with primers 12R (5’-GAGTTTGTACCTGGTGAC-3’) and 13F (5’-AGAAAGGAGGTGATCCAGCC-3’). The PCR products were then sequenced by Invitrogen Corporation, where a 1462-bp stretch was gained. Identification of phylogenetic neighbours and calculation of pairwise 16S rRNA gene sequence similarity values were achieved by using the EzTaxon server (http://www.eztaxon.org/; Chun et al., 2007). Strain SA-7-6T showed highest 16S rRNA gene sequence similarity to Paenibacillus glycanilyticus JCM 11221T (96.6 %), Paenibacillus daejeonensis KCTC 3745T (96.6 %) and Paenibacillus xinjiangensis KCTC 3952T (96.3 %). Levels of sequence similarity to the type strains of other members of the genus Paenibacillus were below 96.3 %. Multiple alignments were performed and a phylogenetic tree based on 16S rRNA gene sequences was constructed by using MEGA3.1 software (Kumar et al., 2004). Sequence alignment was achieved by using the CLUSTAL W method (Thompson et al., 1994). The model of Jukes & Cantor (1969) was used to compute evolutionary distances, based on which a phylogenetic tree was constructed by using the neighbour-joining method with bootstrap analysis of 1000 replications (Fig. 1) (Saitou & Nei, 1987) and by using the maximum-parsimony method (data not shown).

Stackebrandt & Goebel (1994) have stated that strains showing less than 97.0 % 16S rRNA gene sequence similarity will have levels of DNA–DNA relatedness below
70%. Given this accepted standard for the definition of bacterial species, strain SA-7-6^T was not related to any recognized species of the genus *Paenibacillus*.

Cell morphology was examined by phase-contrast microscopy (Olympus). Flagellum type was observed by transmission electron microscopy by using cells from the exponential phase of growth (Fig. 2). Scanning electron microscopy was used to investigate the strain at different growth phases, namely vegetative cells, swollen cells and spores. When grown at 37 °C for 16 h, strain SA-7-6^T formed circular, smooth, opaque, ivory colonies on TSA plates, whereas after 24 h growth under the same conditions, colonies tended to be translucent. Cells were Gram-positive, rod-shaped and motile with peritrichous flagella. They produced ellipsoidal spores in swollen sporangia.

Physiological characteristics were examined by incubating the isolate in basal TSB medium at different temperatures (4, 25, 30, 37, 45 and 50 °C), pH and NaCl concentrations (Table 1). Growth was observed at 25–45 °C (optimum at 37 °C) but not at 4 or 50 °C. Growth at different pH

Fig. 1. Neighbour-joining tree based on 16S rRNA gene sequences showing the phylogenetic positions of strain SA-7-6^T and other related taxa within the genus *Paenibacillus*. Reference strains were selected from a comparison of 16S rRNA gene sequences from *Paenibacillus* species with validly published names. The sequence of *Bacillus subtilis* NCDO 1769^T was used to root the tree. Numbers at nodes indicate levels of bootstrap support based on 1000 resamplings; only values above 60% are indicated. Bar, 1% sequence divergence.

Fig. 2. Transmission electron micrograph of a cell of strain SA-7-6^T showing peritrichous flagella. Bar, 1 μm.
Nitrate reduction, activities of catalase, oxidase, β-galactosidase, arginine decarboxylase and phenylalanine deaminase, H₂S production, indole production, and hydrolysis of starch, casein, gelatin and Tween 80. Acid production was determined by using API 50 CH strips (bioMérieux) following the manufacturer’s instructions. Differential characteristics between strain SA-7-6ᵀ and the type strains of closely related *Paenibacillus* species are presented in Table 1. GP2 Biolog microplates were used to test for the utilization of carbon compounds by strain SA-7-6ᵀ. Antibiotic sensitivity was tested by adding different antibiotics to tubes containing 5 ml TSB and incubating in a rotary shaker for 24 h at 37 °C. Strain SA-7-6ᵀ was resistant to kanamycin (10 μg ml⁻¹), but not to ampicillin (20 μg ml⁻¹), carbenicillin (20 μg ml⁻¹) or chloramphenicol (25 μg ml⁻¹).

For fatty acid analysis, strain SA-7-6ᵀ was grown on TSA at 37 °C for 16 h until the late exponential phase of growth. Fatty acids were extracted following the instructions of the Sherlock Microbial Identification System (MIDI). The major fatty acid was anteiso-C₁₅:₀ (47.22 %), which is in accordance with data for other members of the genus *Paenibacillus* (Shida et al., 1997), followed by C₁₆:₀ (14.17 %), anteiso-C₁₇:₀ (13.47 %), iso-C₁₅:₀ (11.54 %) and iso-C₁₇:₀ (4.22 %) (Table 2). Distinct quantitative differences were found in the fatty acid profiles of strain SA-7-6ᵀ and *P. xingjiangensis* KCTC 3952ᵀ, which was also isolated from Xinjiang, China. Strain SA-7-6ᵀ showed higher levels of C₁₄:₀, iso-C₁₅:₀, iso-C₁₇:₀, anteiso-C₁₇:₀ and C₁₆:₁ ω₉ c₁₆, but lower levels of iso-C₁₄:₀ and iso-C₁₆:₀ as compared with *P. xingjiangensis* KCTC 3952ᵀ.

Cell walls were prepared according to the method of Komagata & Suzuki (1987). The diagnostic cell-wall amino acids comprising less than 0.5 % of the total were excluded. All strains were cultured on TSA at about 30 °C.

<table>
<thead>
<tr>
<th>Strain</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. parvum</td>
<td>42.72</td>
<td>48.61</td>
<td>47.36</td>
</tr>
<tr>
<td>C. jejuni</td>
<td>13.47</td>
<td>4.40</td>
<td>14.66</td>
</tr>
<tr>
<td>C. butyricum</td>
<td>1.55</td>
<td>0.53</td>
<td>2.49</td>
</tr>
</tbody>
</table>

For fatty acid analysis, strain SA-7-6ᵀ was grown on TSA at 37 °C for 16 h until the late exponential phase of growth. Fatty acids were extracted following the instructions of the Sherlock Microbial Identification System (MIDI). The major fatty acid was anteiso-C₁₅:₀ (47.22 %), which is in accordance with data for other members of the genus *Paenibacillus* (Shida et al., 1997), followed by C₁₆:₀ (14.17 %), anteiso-C₁₇:₀ (13.47 %), iso-C₁₅:₀ (11.54 %) and iso-C₁₇:₀ (4.22 %) (Table 2). Distinct quantitative differences were found in the fatty acid profiles of strain SA-7-6ᵀ and *P. xingjiangensis* KCTC 3952ᵀ, which was also isolated from Xinjiang, China. Strain SA-7-6ᵀ showed higher levels of C₁₄:₀, iso-C₁₅:₀, iso-C₁₇:₀, anteiso-C₁₇:₀ and C₁₆:₁ ω₉ c₁₆, but lower levels of iso-C₁₄:₀ and iso-C₁₆:₀ as compared with *P. xingjiangensis* KCTC 3952ᵀ.

Cell walls were prepared according to the method of Komagata & Suzuki (1987). The diagnostic cell-wall amino acids comprising less than 0.5 % of the total were excluded. All strains were cultured on TSA at about 30 °C.

<table>
<thead>
<tr>
<th>Fatty acid</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Straight-chain saturated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₁₄:₀</td>
<td>2.61</td>
<td>1.93</td>
<td>1.52</td>
</tr>
<tr>
<td>C₁₅:₀</td>
<td>ND</td>
<td>3.44</td>
<td>ND</td>
</tr>
<tr>
<td>C₁₆:₀</td>
<td>14.17</td>
<td>14.43</td>
<td>9.25</td>
</tr>
<tr>
<td>Iso-branched saturated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₁₄:₀</td>
<td>0.84</td>
<td>2.12</td>
<td>2.01</td>
</tr>
<tr>
<td>C₁₅:₀</td>
<td>11.54</td>
<td>9.32</td>
<td>5.91</td>
</tr>
<tr>
<td>C₁₆:₀</td>
<td>3.74</td>
<td>9.62</td>
<td>9.64</td>
</tr>
<tr>
<td>C₁₇:₀</td>
<td>4.22</td>
<td>3.54</td>
<td>4.35</td>
</tr>
<tr>
<td>Anteiso-branched saturated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₁₅:₀</td>
<td>47.22</td>
<td>48.61</td>
<td>47.36</td>
</tr>
<tr>
<td>C₁₇:₀</td>
<td>13.47</td>
<td>4.40</td>
<td>14.66</td>
</tr>
<tr>
<td>Unsaturated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₁₆:₁ ω₉ c₁₆</td>
<td>1.55</td>
<td>0.53</td>
<td>2.49</td>
</tr>
</tbody>
</table>
acid was meso-diaminopimelic acid. Extraction of menaquinone and determination of the menaquinone compositions were carried out by HPLC (Shimadzu) as described by Xie & Yokota (2003). The predominant menaquinone was MK-7.

The thermal denaturation method (Mandel & Marmur, 1968) was used to determine the G+C content of the genomic DNA spectrophotometrically (DU800 spectrophotometer; Beckman Coulter). The DNA G+C content of strain SA-7-6^T was 53.7 mol%.

On the basis of morphological, physiological, chemotaxonomic and phylogenetic characteristics, strain SA-7-6^T is considered to represent a novel species of the genus *Paenibacillus*, for which the name *Paenibacillus tarimensis* sp. nov. is proposed.

Description of *Paenibacillus tarimensis* sp. nov.

Paenibacillus tarimensis (ta.ri.men’sis. N.L. masc. adj. *tarimensis* referring to ‘Tarim Basin, China, the geographical origin of the type strain).

Cells are Gram-positive, aerobic rods, 3.0–6.0 μm in length and 0.5–0.8 μm in width. Motile by means of peritrichous flagella. Ellipsoidal endospores are formed in swollen sporangia. Colonies are circular, smooth, opaque and ivory on TSA plates after 16 h incubation at 37 °C. Growth occurs at 25–45 °C; optimum temperature for growth is 37 °C. Cells grow at pH 6.0–9.0; optimum pH is 7.5. Growth is not observed at NaCl concentrations above 3 %. Positive for catalase, β-galactosidase, arginine decarboxylase (weakly), phenylalanine deaminase (weakly), the Voges–Proskauer reaction, methyl red test and aesculin β-acylglucosaminidase, arbutin, D-lyxose, -D-glucose 1-phosphate, D-glucose, D-fructose, N-acetylglucosamine, arbutin, D-lyxose, -D-glucose, -D-fructose, L-sorbosone, inositol, D-sorbitol, methyl α-D-mannopyranoside, D-galacturonic acid, α-D-glucose, α-D-galactose, maltose, α-D-mannose, melibiose, methyl β-D-glucoside, raffinose, starch, glycosgen, gentiobiose and D-tagatose, but not from glycerol, erythritol, D-ribose, L-xylene, D-adonitol, D-fructose, L-sorbose, L-xylose, L-xylopyranoside, arbutin, D-lyxose, D-arabitol or potassium 2-ketogluconate. Utilizes dextrin, glycogen, cellobiose, D-galacturonic acid, α-D-glucose, α-D-galactose, maltose, L-rhamnose, inositol, D-sorbitol, methyl α-D-mannopyranoside, N-acetylglucosamine, arbutin, D-lyxose, D-arabitol or potassium 2-ketogluconate. Utilizes dextrin, glycogen, cellobiose, D-galacturonic acid, α-D-glucose, α-D-galactose, maltose, α-D-mannose, melibiose, methyl β-D-glucoside, raffinose, salicin, stachyose, sucrose, L-malic acid, succinic acid, α-D-glucose 1-phosphate, D-glucose 6-phosphate, D-ribose, D-xylose, pyruvic acid methyl ester, succinic acid monomethyl ester and pyruvic acid, but not Tween 40, Tween 80, arbutin, D-sorbitol or α-ketoglutaric acid (Biolog GP2 plates). Major cellular fatty acids are anteiso-C15:0, C16:0 9c and anteiso-C17:0 9c. C14:0 6c, C10:0 3-OH and C12:0 3-OH are minor components. The predominant menaquinone is Q-7. The type strain, SA-7-6^T (=CCTCC AB 206108^T=DSM 19409^T), was isolated from desert sand of the Tarim Basin, Xinjiang, China.

Acknowledgements

This work was supported by the National Infrastructure of Natural Resources for Science and Technology program, Ministry of Science and Technology, People’s Republic of China. We would like to thank Dr Akira Yokota, Institute of Molecular and Cellular Biosciences, University of Tokyo, Japan, for quinone analysis.

References

Notes:

- The neighbor-joining method: a new method for reconstructing phylogenetic trees.
- MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment.
- *Brief Bioinform* 5, 150–163.

http://ijs.sgmjournals.org