Mucilaginibacter kameinonensis sp., nov., isolated from garden soil

Makoto Urai,1†† Tomoko Aizawa,1† Yasuyoshi Nakagawa,2 Mutsuyasu Nakajima1,3 and Michio Sunairi1

1Department of Applied Biological Sciences, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-8510, Japan
2Biological Resource Center (NBRC), Department of Biotechnology, National Institute of Technology and Evaluation, 2-5-8 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
3Environmental Program, Nihon University Advanced Research Institute for the Sciences and Humanities, 12-5 Goban-cho Chiyoda, Tokyo 102-8251, Japan

An extracellular polysaccharide-producing bacterium, strain SCKT, was isolated from a soil sample taken from Kameino, Fujisawa, Japan. The isolate was Gram-negative and cells were non-motile, irregular-shaped rods that grew optimally at 25 °C and grew between pH 5 and 8. Strain SCKT contained MK-7 as the major isoprenoid quinone, iso-C15 : 0 and C16 : 1 v7c and/or iso-C15 : 0 2-OH as the major fatty acids and sphingolipids, with d-17 : 0 as the main dihydrosphingosine. Flexirubin-type pigments were also present. The DNA G+C content was 43.7 mol%. On the basis of 16S rRNA gene sequence analysis, strain SCKT was shown to belong to the genus Mucilaginibacter. The 16S rRNA gene sequence similarity between strain SCKT and the two type strains of Mucilaginibacter was 93 %. The results of physiological and biochemical tests allowed phenotypic differentiation of the strain from published Mucilaginibacter species. Therefore, strain SCKT represents a novel species, for which the name Mucilaginibacter kameinonensis sp. nov. is proposed. The type strain is SCKT (=NBRC 102645T =KCTC 22227T).

It has been reported that some bacterial strains belonging to the genus Rhodococcus produce extracellular polysaccharides (EPS), including fatty acids containing EPS, and that these EPS have a variety of functions, including protection of bacterial cells from the toxicity of hydrocarbons (Aizawa et al., 2005; Iwabuchi et al., 2000), emulsification, moisture absorption (Urai et al., 2002, 2004) and stimulation of degradation of polyaromatic hydrocarbons (PAH) spilled in marine environments, the latter probably occurring via stimulation of marine PAH-assimilating bacteria (Iwabuchi et al., 2002). These EPS are acidic, high-molecular-mass polysaccharides containing uronic acids (Urai et al., 2006a, b, 2007a, b). During the screening for micro-organisms that were able to assimilate the EPS produced by Rhodococcus rhodochrous S-2 (S-2 EPS), strain SCKT was isolated from a soil sample taken from a garden on our campus at Kameino, Fujisawa, Japan. The strain formed mucoid colonies and produced a large amount of EPS. On the basis of phenotypic, genotypic, chemotaxonomic and phylogenetic analyses, it was concluded that strain SCKT was affiliated with the genus Mucilaginibacter and represents a novel species of this genus.

The genus Mucilaginibacter was established recently and belongs to the family Sphingobacteriaceae; it currently includes two species, Mucilaginibacter gracilis and Mucilaginibacter paludis, which were isolated from an acidic Sphagnum peat bog as pectin-, xylan- and laminarin-degrading bacteria (Pankratov et al., 2007).

After a series of three enrichments in MU liquid medium [0.2 g MgCl2, 7H2O, 0.1 g CaCl2, 2H2O, 0.1 g NaCl, 0.02 g FeCl2·6H2O, 0.5 g (NH4)2SO4, 1 g S-2 EPS l–1; pH 7.2], strain SCKT was isolated on MU agar plates (solidified with 15 g agar l–1) at 28 °C under aerobic conditions. The strain formed mucoid colonies on MU agar plates as well as on tryptic soy agar (TSA) and IB agar (Sunairi et al., 1997) plates but showed little or no growth on MacConkey agar. After cultivation of the strain in IB liquid medium at 28 °C for 1 week, EPS was detected in the culture supernatant at...
0.5 g l\(^{-1}\), which was calculated as 0.7 g EPS (g dry cells)\(^{-1}\). This EPS contained D-galactose, D-glucose, D-mannose and L-rhamnose in equimolar amounts. The chemical structure and functional aspects of the EPS produced by strain SCK\(^T\) will be described elsewhere. The strain showed good growth on TSA at 5–30 °C, with an optimum at 25 °C, but did not grow at 45 °C. Strain SCK\(^T\) showed good growth in tryptic soy broth (TSB) over the pH range 4–9, with optimum growth at pH 5–8, but showed little or no growth below pH 3 or above pH 10, when grown at 30 °C for 5 days. The strain showed good growth in the presence of 0.5 % (w/v) NaCl in TSB, but little or no growth occurred in the presence of 1 % (w/v) NaCl or higher. The strain was Gram-negative (Ryu, 1938) and was non-endospore-forming and aerobic. Motility was not observed. Cellular morphology was observed by scanning electron microscopy. After critical-point drying, specimens were sputter-coated with gold and palladium. The cells appeared as irregular rods, 0.3–0.7 \(\mu\)m wide and 0.8–3.5 \(\mu\)m long, when the organisms were cultured on IB agar plates at 25 °C for 2 days (Fig. 1).

The 16S rRNA gene of the strain was amplified by PCR using universal primers (Tamura & Hatano, 2001), and the nearly complete 16S rRNA gene nucleotide sequence (1451 bp) was determined. By sequence match analysis using the Ribosome Database Project II, the sequence of strain SCK\(^T\) showed high similarities to sequences of the type strains of species belonging to the family Sphingobacteriaceae, i.e. the genera Mucilaginibacter, Olivibacter, Parapedobacter, Pedobacter and Sphingobacterium. The highest sequence similarities were found with the type strains of M. gracilis and M. paludis (93 % similarity). The 16S rRNA gene sequences of all other species of the family Sphingobacteriaceae had <91 % similarity with that of strain SCK\(^T\). The phylogenetic relationship between strain SCK\(^T\) and closely related species was determined by using MEGA version 4 (Tamura et al., 2007) after multiple alignments of the data performed by using CLUSTAL_X (Thompson et al., 1997). Evolutionary distances were computed as described by Jukes & Cantor (1969). Phylogenetic trees were constructed by using the maximum-parsimony (Kluge & Farris, 1969) and neighbour-joining (Saitou & Nei, 1987) methods. The reliabilities of these tree topologies were evaluated by bootstrap analysis with 1000 replicates (Felsenstein, 1985). The phylogenetic trees constructed by the two methods were topologically similar and showed that strain SCK\(^T\) belonged to the genus Mucilaginibacter and formed a separate line of descent in the phylogenetic cluster of the genus (Fig. 2). As pointed out by Stackebrandt & Goebel (1994), a low degree of 16S rRNA gene sequence similarity (below 97 %) is of value for differentiating species, and DNA–DNA hybridization studies are not needed. These data suggest that strain SCK\(^T\) represents a novel species of the genus Mucilaginibacter.

Analyses of menaquinones, DNA G+C content and cellular fatty acids were performed as described previously (Tamura et al., 1994). The major isoprenoid quinone of the strain was MK-7. The DNA G+C content was 43.7 mol%. The fatty acid profile of strain SCK\(^T\) (>1.0 % of total fatty acids) included straight-chain fatty acids C\(_{16:0}\) (7.6 %), C\(_{14:0}\) (2.0 %), and C\(_{15:0}\) (1.2 %), branched fatty acids iso-C\(_{15:0}\) (25.9 %) and iso-C\(_{17:0}\) (1.4 %), summed feature 3 (comprising C\(_{16:1}^{\text{c9c}}\) and/or iso-C\(_{15:0}\) 2-OH) (49.2 %), hydroxy fatty acids iso-C\(_{17:0}\) 3-OH (5.6 %), C\(_{16:0}\) 3-OH (2.7 %) and iso-C\(_{15:0}\) 3-OH (1.1 %) and unsaturated fatty acid C\(_{16:1}^{\text{c9c}}\) (3.3 %).

By the bathochromic shift test with 20 % (w/v) KOH (Fautz & Reichenbach, 1980), flexirubin-type pigments were detected. The long-chain acyl components of cellular sphingolipids were analysed as described previously (Yano et al., 1982). Strain SCK\(^T\) contained sphingolipids with \(d\)-17 : 0 as the main dihydrosphingosine.

Standard physiological tests were carried out according to the methods of Smibert & Krieg (1994). Acid production from carbon sources was assessed by using the API 50 CH system and enzyme activities with the API 20 E and API ZYM systems according to the manufacturer’s instructions (bioMérieux) (incubation times of up to 7 days). Oxidation of various substrates was tested using Biolog GN2 Microplates (Biolog) in accordance with the manufacturer’s instructions. Heparinase activity was tested according to Zimmermann et al. (1990). Strain SCK\(^T\) could be distinguished from the other species of Mucilaginibacter on the basis of physiological characteristics (Table 1). Resistance to antibiotics was examined by using the API VET system (bioMérieux) in accordance with the manufacturer’s instructions.

Based on phenotypic and phylogenetic characterization, strain SCK\(^T\) was concluded to represent a novel species, for which the name Mucilaginibacter kameinonensis sp. nov. is

Fig. 1. Scanning electron micrograph of cells of strain SCK\(^T\). Cells were grown on IB agar plates at 25 °C for 2 days. After critical-point drying, specimens were sputter-coated with gold/palladium and observed with a scanning electron microscope (S-3500N; Hitachi). Bar, 2 \(\mu\)m.
proposed. As some properties of strain SCK^T are not compatible with the original description of the genus *Mucilaginibacter* (Pankratov et al., 2007), an emended description of the genus is also given.

Emended description of the genus *Mucilaginibacter* Pankratov et al. 2007

In contrast to the genus description given by Pankratov et al. (2007), this study shows that strains belonging to the genus *Mucilaginibacter* are variable for the presence of flexirubin-type pigments, oxidase and the utilization of melibiose.

Description of *Mucilaginibacter kameinonensis* sp. nov.

Mucilaginibacter kameinonensis (ka.me.i.no.nen’sis. N.L. masc. adj. *kameinonensis* pertaining to Kameino, the location from which the organism was first isolated).

Gram-negative, non-endospore-forming, non-motile, aerobic, irregular rods, 0.3–0.7 μm wide and 0.8–3.5 μm long. Growth occurs on TSA and IB agar, but not on MacConkey agar. Colonies are pale pink, mucoid, convex and round. Growth occurs on TSA and IB agar, but not on MacConkey agar. Between 5 and 30°C with entire margins on TSA and IB agar. Growth occurs in the absence of NaCl and in the range for growth is pH 4–9, with optimum growth at pH 5–8. Growth occurs in the presence of 0.5 % (w/v) NaCl, but not in the presence of 1 % (w/v) NaCl or higher. Positive for hydrolysis of aesculin and Tween 20 and 60, but negative for casein and Tween 40 and 80. Positive for activities of *N*-acetyl-β-glucosaminidase, acid and alkaline phosphatases, catalase, cystine arylamidase, DNase, esterase (C4), esterase lipase (C8), α-fucosidase, α-galactosidase, β-galactosidase, gelatinase, α-glucosidase, β-glucosidase, β-glucuronidase, leucine arylamidase, α-mannosidase, naphthol-AS-Blphosphohydrolase, trypsin and valine arylamidase, but negative for activities of arginine dihydrolase, α-chymotrypsin, heparinase, lipase (C14), lysine decarboxylase, ornithine decarboxylase, oxidase, tryptophan deaminase and urease, as determined with the API ZYM system.

Positive for the Voges–Proskauer test, but negative for hydrogen sulphide and indole production and nitrate reduction. Positive for acid production from *N*-acetylglucosamine, amygdalin, D- and L-arabinose, cellobiose, aesculin, D-fructose, L-fucose, D-galactose, gentiobiose, D-glucose, glycogen, inulin, D-lactose, maltose, D-mannose, melezitose, melibiose, methyl β-D-xylopyranoside, potassium 5-ketogluconate, raffinose, salicin, starch, sucrose, trehalose, turanose and D-xylene, but negative for acid production from D-adonitol, D- and L-arabitol, arbutin, dulcitol, erythritol, D-fucose, glycerol, inositol, D-lyxose, D-mannitol, methyl α-D-glucopyranoside, methyl α-D-mannopyranoside, potassium gluconate, potassium 2-ketogluconate, L-rhamnose, D-ribose, D-sorbitol, L-sorbose, D-tagatose, xylitol and D-xylene, as determined with the API 50CH system. Positive for Biolog GN2 MicroPlate substrates cellulose, α-cyclodextrin, dextrin, D-fructose, D-galactose, gentiobiose, α-D-glucose, glycogen, lactulose, maltose, D-mannose, melibiose, methyl β-D-glucoside, L-proline, raffinose, sucrose, trehalose and turanose, but negative for acetic acid, *N*-acetyl-D-galactosamine, cis-aconitic acid, adonitol, L-alaninamide, D- and L-alanine, L-alanylglycine, γ-aminoenobutyric acid, 2-aminoethanol, L-arabinose, D-arabitol, L-asparagine, L-aspartic acid, bromosuccinic acid, 2,3-butanediol, D- and L-carnitine, citrate, i-erythritol, formic acid, L-fucose, D-galactonic acid lactone, D-galacturonic acid, D-gluconic acid, D-glucosaminic acid, α-D-glucose 1-phosphate, D-glucose 6-phosphate, glucuronamide, D-glucuronic acid, L-glutamic acid, D- and L-α-glycerol phosphate, glycol L-aspartic acid, glycol L-glutamic acid, L-histidine, α-, β- and γ-hydroxybutyric acids, p-hydroxyphenylacetic acid, hydroxy-L-proline, inosine, myo-inositol, itaconic acid, α-ketobutyric acid, α-ketoglutaric acid, α-ketovaleric acid, D- and L-lactic acid, L-leucine, malate, D-mannitol, L-ornithine, L-phenylalanine, phenylethylamine, propionic acid, D-psicose, putrescine, L-pyrogallol acid, pyruvic acid methyl ester, quinic acid, D-saccharic acid, sebacic acid, D- and L-serine, D-sorbitol, succinamic acid, succinic acid, succinic acid monomethyl ester, L-threonine, thymidine, Tweens 40 and 80, uridine, urocanic acid and xylitol.

![Fig. 2. Neighbour-joining tree (Saitou & Nei, 1987) based on nearly complete 16S rRNA gene sequences (positions 56–1396 of the *Escherichia coli* 16S rRNA gene), showing the position of the strain SCK^T among its phylogenetic neighbours. Numbers at branch nodes are percentages of bootstrap support based on 1000 resamplings; only values over 50 % are given. The sequence of *Flexibacter flexilis* IFO 15060^T_ was used as an outgroup. Bar, 0.02 substitutions per nucleotide position.](image)
Resistance to apramycin, cefoperazone, cephalothin, chloramphenicol, colistin, enrofloxacin, erythromycin, flumequine, gentamicin, kanamycin, lincomycin, metronidazole, nitrofurantoin, oxacillin, oxolinic acid, penicillin, rifampicin and streptomycin, but sensitive to amoxicillin, augmentin, cotrimoxazole, doxycycline, fusidic acid, pristinamycin, spectinomycin, sulphamethizole, tetracycline and tylosin (API VET system). The major isoprenoid fatty acids are iso-C₁₅:₀ (25.9 %) and summed feature 3 (C₁₆:₀ 3OH and/or iso-C₁₅:₀ 2-OH) (49.2 %). Sphingolipids are present, with d-17 : 0 as the main dihydrosphingosine. Flexirubin-type pigments are present. The DNA G+C content of the type strain is 43.7 mol%.

The type strain, SCKᵀ (≡NBRC 102645ᵀ = KCTC 22227ᵀ), was isolated from a soil sample from the campus of the College of Bioresource Sciences, Nihon University, at Kameino, Fujisawa, Kanagawa, Japan.

Table 1. Physiological characteristics of strain SCKᵀ and type strains of Mucilaginibacter species

Data for M. paludis and M. gracilis were taken from Pankratov et al. (2007). +, Positive; –, negative; w, weakly positive. All strains had the following characteristics: positive for assimilation of cellobiose, D-fructose, D-galactose, D-glucose, D-lactose, maltose, sucrose and trehalose; positive for acid production from cellobiose, D-fructose, D-galactose, D-glucose, maltose, sucrose and D-xylol; positive for catalase activity; negative for assimilation of acetic acid, adonitol, D-arabitol, citric acid, malic acid, D-mannitol, propionic acid, D-sorbitol and succinic acid; negative for Gram stain, motility, H₂S production, indole production and heparinase activity.

Acknowledgements

We are grateful to T. Tamura at the NBRC and K. Ueda at the Life Science Center for use of their instrumental facilities. We acknowledge N. Iwabuchi, M. Suzuki, K. Shimoda, A. Takahashi and various members of our laboratories for their technical assistance and encouragement. We also recognize N. Akimoto, M. Hyoudou, M. Kogure and N. Sekino at the Integrated Research Institute for their technical assistance. M. U. and T. A. were supported by funding from the Center of Excellence in 21st Century Projects of the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

References

