Shewanella basaltis sp. nov., a marine bacterium isolated from black sand

Ho-Won Chang,¹ Seong Woon Roh,¹,² Kyoung-Ho Kim,¹ Young-Do Nam,¹,² Che Ok Jeon,³ Hee-Mock Oh¹ and Jin-Woo Bae¹,²,³

¹Biological Resources Center, KRIBB, Daejeon 305-806, Republic of Korea
²Korea University of Science and Technology, 52 Eoeun-dong, Daejeon 305-333, Republic of Korea
³Environmental Biotechnology National Core Research Center, Gyeongsang National University, Jinju 660-701, Republic of Korea

A Gram-negative, motile, rod-shaped bacterium was isolated from black sand collected at Soesoggak, Jeju island, Korea. The strain, designated J83T, was able to grow in the presence of 5 % NaCl, at temperatures of 4–45 °C and over the pH range 5.5–9.5. The isolate reduced nitrate to nitrite and was positive for oxidase, catalase, alkaline phosphatase and leucine arylamidase. Strain J83T utilized malate, maltose, mannitol and glucose as sole sources of carbon. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain J83T belongs to the class Gammaproteobacteria and is related to species of the genus Shewanella. Strain J83T exhibited 97.8 % 16S rRNA gene sequence similarity to the type strain of Shewanella hafniensis. Based on DNA–DNA hybridization, the level of relatedness between strain J83T and S. hafniensis NBRC 100975T was 39.3 %. On the basis of phenotypic, genetic and phylogenetic data, strain J83T is considered to represent a novel species of the genus Shewanella, for which the name Shewanella basaltis sp. nov. is proposed. The type strain is J83T (=KCTC 22121T =JCM 14937T).

The genus Shewanella was first described by MacDonell & Colwell (1985) and, at the time of writing, comprises 47 recognized species (http://www.bacterio.cict.fr/s/shewanella.html). The genus belongs within the family Shewanellaceae (Ivanova et al., 2004). Micro-organisms that belong to the genus Shewanella have a worldwide distribution in aquatic and marine environments (Bozal et al., 2002; Yang et al., 2006) and have been isolated from estuaries (Skerratt et al., 2002; Venkateswaran et al., 1998), deep-sea sediment (Xiao et al., 2007; Yang et al., 2007) and tidal flats (Yoon et al., 2004). The majority of Shewanella species have been isolated from marine environments. A Shewanella-like, Gram-negative, rod-shaped bacterial strain, J83T, was recently isolated from black sand collected from Soesoggak, Jeju island, Korea. Here we describe the phenotypic, genetic and chemotaxonomic characteristics as well as taxonomic position of strain J83T.

Strain J83T was routinely grown at 30 °C for 3 days on marine agar (MA; Difco) or marine salts basal medium (MB) (Baumann & Baumann, 1981) supplemented with various carbon sources. Cell morphology was examined by light microscopy (E600; Nikon) and transmission electron microscopy. Cellular motility was determined by observing fresh wet-mounts of young bacterial MB cultures via the hanging drop method. The presence of flagella was investigated by transmission electron microscopy by using cells from an exponentially growing culture. The Gram reaction was determined by using a Gram stain kit (Difco) according to the manufacturer’s instructions. Reference strain Shewanella hafniensis NBRC 100975T was obtained from the NBRC, Japan, and was grown under the same conditions. Bacterial cultures of the novel isolate and reference strain were stored at −80 °C in MB containing 20 % glycerol. For morphological and physiological characterization, strain J83T was generally cultivated in MB and incubated by shaking at 30 °C. Growth at various NaCl concentrations, temperature and pH was measured in MB. Growth under anaerobic conditions was determined by incubation for 7 days in anaerobic Gaspak jars (BBL) containing an atmosphere of 80 % N₂, 10 % CO₂ and 10 % H₂. Anaerobic growth was tested as described by Bowman et al. (1997) with various electron acceptors such as nitrate, iron oxide and sulfur and suitable donors such as lactate and pyruvate. Catalase activity was determined by bubble production in a 3 % (v/v) H₂O₂ solution. Oxidase activity was determined by using an oxidase reagent (bioMérieux). API 20NE and API ZYM test strips (bioMérieux) were used.
to analyse the biochemical and physiological characteristics of the bacterial strains, and additional biochemical tests were performed with the methods and media described by Gordon et al. (1973). The ability to grow on various carbon sources was tested as described by Gonzalez et al. (1997). Bacteria grown on MA for 3 days at 30 °C were used for analysis of fatty acid methyl esters. Fatty acids were extracted and prepared according to standard protocols provided by the MIDI/Hewlett Packard Microbial Identification System (Sasser, 1990). Chromosomal DNA was extracted and purified according to the method of Sambrook et al. (1989). The 16S rRNA gene was amplified by PCR by using two universal primers as described by Stackebrandt et al. (1993). Sequencing of the amplified 16S rRNA gene and phylogenetic analysis were performed according to Yoon et al. (1998). DNA–DNA hybridization was performed fluorometrically according to the method of Ezaki et al. (1989) by using photobiotin-labelled DNA probes and microwell plates. The 16S rRNA sequence of strain J83 was aligned with 13 reference sequences from the RDP database (Fig. 1) by using the multiple sequence alignment program CLUSTAL_X (v1.8) (Thompson et al., 1997). Phylogenetic relationships between representatives of the genus Shewanella were determined by using MEGA version 2.1 software. Distance matrices were determined following the assumptions described by Kimura (1980). These matrices were used to elaborate dendrograms according to the neighbour-joining (Saitou & Nei, 1987) and maximum-parsimony (Kluge & Farris, 1969) methods. A bootstrap analysis to investigate the stability of the trees was performed by obtaining a consensus tree based on 1000 randomly generated trees.

The morphological, cultural, physiological and biochemical characteristics of strain J83 and of related Shewanella species are given in Table 1 and in the species description. Cells of strain J83 were Gram-negative, motile rods. Growth was observed at 4–45 °C but not above 50 °C. Cells grew in the pH range 5.5–9.5 but not at below pH 4.5 or above pH 11. Growth was observed in the presence of 5 % NaCl but no growth was detected at concentrations above 6 % NaCl. Colonies were circular to slightly irregular, opaque, smooth, convex, slightly ivory-coloured and 2–3.5 mm in diameter after incubation for 3 days on MA. Growth did not occur under anaerobic conditions. Cells were oxidase-, catalase- and β-galactosidase-positive and urease- and arginine dihydrolase-negative. Nitrate was reduced to nitrite. Strain J83 was able to grow on glucose, mannitol, maltose and malate as carbon sources. No growth was observed on arabinose, mannose, N-acetylglucosamine, gluconate, caprate, adipate, citrate or phenylacetate. The dominant cellular fatty acids were C12:0 (14.11 % of the total), C12:0 3-OH (12.04 %), C16:0 (11.80 %) and C16:1ω7c/iso-C15:0 2-OH (9.82 %).

The 16S rRNA gene sequence of strain J83 (1268 bp) was compared with those of the type strains of reference species in the family Shewanellaceae. Strain J83 fell within a cluster comprising Shewanella species (Fig. 1), and exhibited 96.7–97.8 % similarity in its 16S rRNA gene sequence to the type strains of other Shewanella species. Phylogenetic analysis revealed that strain J83 comprises a relatively long subline of descent and occupies a phylogenetically distinct position on the main Shewanella branch. DNA–DNA hybridization experiments were performed to determine the genetic relationship between strain J83 and S. hafniensis NBRC 100975, its closest relative based on 16S rRNA gene sequence analysis. The level of DNA–DNA relatedness between the two strains was 39.3 %. Taken together, the phylogenetic and DNA–DNA hybridization results suggest that strain J83 represents a novel species of the genus Shewanella, for which the name Shewanella basaltis sp. nov. is proposed.

Description of Shewanella basaltis sp. nov.

Shewanella basaltis (ba.sal’tis. N.L. masc. gen. n. basaltis of basalt, pertaining to the source of isolation).

Cells are Gram-negative, motile rods, 0.5–0.8 μm wide by 1–1.5 μm long in 3-day cultures growing at 30 °C on MA.

![Fig. 1. Consensus phylogenetic tree based on 16S rRNA gene sequences showing the relationship between strain J83 and the type strains of the most closely related *Shewanella* species. The tree was constructed based on the neighbour-joining method and p-distances. Filled circles indicate generic branches that were also recovered by using the maximum-parsimony algorithm. Bootstrap analyses were performed with 1000 repetitions; only values >50 % are shown. GenBank accession numbers are given in parentheses. Bar, 0.01 % sequence divergence.](image-url)
Table 1. Differential characteristics between strain J83T and related species of the genus Shewanella

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Growth at/in:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37 °C</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>6% NaCl</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gelatin hydrolysis</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Assimilation:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sucrose</td>
<td>-</td>
<td>-</td>
<td>W</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Glucose</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Arabinose</td>
<td>-</td>
<td>W</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mannose</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Mannitol</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N-Acetylglucosamine</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Maltose</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gluconate</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Malate</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Citrate</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

plates. Colonies are circular to slightly irregular, opaque, smooth, convex, slightly ivory-coloured and 2–3.5 mm in diameter after incubation for 3 days on MA. Cells grow in the presence of 5% NaCl but not in 6% NaCl. Growth occurs at 4–45 °C, and at pH 5.5–9.5. No growth is detected below pH 4.5 or above pH 11. Cells are catalase- and oxidase-positive and urease-, indole- and arginine dihydrodase-negative, hydrolyse gelatin and reduce nitrate to nitrite. Glucose, mannitol, maltose and malate can be utilized as sole carbon and energy sources, but not arabinose, mannose, N-acetylglucosamine, gluconate, caprate, adipate, citrate or phenylacetate. Positive for alkaline phosphatase, esterase (C8), valine arylamidase, naphthol-AS-BI-phospho-phenylacetate. Positive for alkaline phosphatase, esterase (C4), lipase (C14), leucine arylamidase, trypsin, ς-chymotrypsin, acid phosphatase, ς-galactosidase, β-galactosidase, β-glucoronidase, ς-glucosidase, β-glucosidase, ς-mannosidase and ς-fucosidase activities. The predominant fatty acids are C12:0 (14.11% of the total), C12:0 3-OH (12.04%), C16:0 (11.80%) and C16:1ω7c/iso-C15:0 2-OH (9.82%).

The type strain, J83T (=KCTC 22121T =JCM 14937T), was isolated from black sand from Soesogaj, Jeju island, Korea.

Acknowledgements

This work was supported by the KRIBB Research Initiative Program and the Environmental Biotechnology National Core Research Center (KOSEF: R15-2003-012-02002-0) from the Ministry of Science and Technology (MOST) of the Republic of Korea.

References

